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Abstract.In this paper, weexplain thecomputationwemadein collaborationwith
M. Talon and C. M. Viallet of anomaloustermsin gaugetheory [1], [2], [3]. We
relate our constructions to standard mathematicalconstructions. The paper is
self-containedin the sensethat all mathematicalconceptsandresults we useare
explained.

0. INTRODUCTION

The themeof this paperis the work [1] we did in collaborationwith M. Talon

and C.M. Viallet on the computationof anomalousterms in gaugetheory. In
[1], we introduceda lot of conceptsand methodswhich are strongly connected
with standardmathematicalconstructions.Since thesestandardmathematical

constructionsare not so familiar for physicists,a part of this paperis devoted
to explain them and to give examples.We then describeand relateour construc-
tionsto thesemathematicalconstructions.

The notion of anomaliescomesfrom the observationthat for someinvariant

classical theoriesone cannot constructcorrespondingquantumtheorieswhich

possessthe sameinvariance.For instance,for non-abeliangaugetheorycoupled
to chiral fermions, the classical (local) action F~°~(a,s/i) is invariant by gauge
transformationswhile there are obstructions, called anomalies, to the gauge
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invariance of the correspondingquantum action functional F(a,s/i). Let us

remind that r(a, s/i) is the generatingfunctional for one-particle-irreducible
Green <<functions,>, i.e. that it is a functional of classical (test) <<fields>> (like
the classical action F~°~(a,s/i)); this means that in the expressionr(a, s/i), a

and s/i may be chosenas smoothand as regular at infinity as needed.The lack
of gaugeinvarianceof F(a, i/i) manifestsitself by the non vanishingof the varia-

tion A = or (a, s/i; ~) of F under infinitesimal gauge transformations(~are in
the Lie algebraof the group of gaugetransformations).It turnsout that OF = A,
which is a linear functional in ~, only dependson a, (and ~ of course),and is
local in the sensethat one has A(a; ~)= fQ(a; ~), where the integral is taken

overthe n-dimensionalspace-timeM and whereQ(a;~)is a n-form on M (which
is a functional of a and ~) such that its value at x EM only dependson the

valuesat x of a, ~ and a finite numberof their derivatives;i.e. (a,~)-÷ Q(a,~)
is a differential operator which is linear in ~. By a finite renormalization,A is
modified by the addition of a term OF1~~,whereFloc(a)= fL(a) is a local func-

tion of a. It follows that the obstruction to invarianceis only A modulosuch
~ ‘°~. For a given model A is determinedby calculationof Feynmangraphs,
however,thesecomputationsare quite cumbersomeand it is an objectiveof the

algebraicapproach[4], [5], [6] to give the genericform of the obstructionswhich
may occur is any model.

Let G be thestructuregroupof the gaugetheory (a finite dimensionalcompact

Lie group) and let G be the correspondinggroupof gaugetransformations(i.e.
here, the smoothG-valuedfunctions on M). The Lie algebraLie (G) of G identi-

fies with the smooth functionson M with valuesin the Lie algebraLie (G) of G.
The infinitesimal right action of G on gaugepotentialsagives a representation

0 of Lie (G) in the space P of (polynomial) functionalsof a. Thus one may
considerthe complex C*(P; Lie (G)) of cochainsof Lie (G) with values in P

(see below in section 1). Let 0 denotesthe differential of C*(P; Lie (G)) and
consider the subspace C~~(P;Lie (G)) = 0 C~(P;Lie (p)) of C*(P; Lie (G))

where C~~(P;Lie (G)) is the space of the F(a; ~ ~) of Ck(p; Lie (G))
which are of the form fQ(a; ~, ~ where (a, ~1’~~~’~ —* Q(a;~, -

is a differential operator with values in the n-form on M. C~~(P;Lie (~))
is stableby 0, so its cohomologyH~~(P;Lie (G)) is well defined.Observethat
the aboveA(a; ~) is in C

1
1�~~(P;Lie (G)) and satisfies(by its very definition) the

consistencyequationof Wessand Zumino [7] OA = 0 andthat finite renormali-
zation modify A by the addition of elementsof OC

1°0~(P;Lie (G)). Thus the
<<real anomaly>> (i.e. the obstructionto the invariance)lies in H1~~(P;Lie (G)).
Similarily by working in (n — 1)-dimensional fixed-time space, it was pointed

out by Faddeev[81, that the obstructionsto the elimination of anomalousSch-
winger terms A(a; ~ in the equal-timecommutationrelations of currents
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are elementsof the correspondingH~(P;Lie (G)).

SettingA = fQ where Q is a differentialoperatorin aandthe s’s, multi-linear
antisymmetric in the s’s, with values in the differential forms, the equation

= 0 leads, for Q, to the equation [4] OQ + dQ’ = 0 for someQ’; d is the
exterior differential on differential forms. It turns out that Q’ may again be
chosento be a differential operator(of the sametype as Q) with valuesin the

differential forms of appropriate degree;this comesfrom the triviality of the
d-cohomology on the appropriateclass of differential operators [9], [6]. If

A = 6 fL where L is a differential operatoras above,then Q readsQ = OL + dL’

for some L’ which, for the same reasonas before, may be chosento be again
a differential operator of the abovetype. We say that a Q as abovesatisfying

OQ + dQ’ = 0 is a 0-cocyclemodulo d and that if Q = OL + dL’ it is a 0-coboun-
dary modulo d. Classesof 6-cocyclesmodulod up to 6-coboundanesmodulod

are the elementsof the 0-cohomology modulo d. It follows from the above
considerationsthat the relevant cohomology for the problem of anomalous

terms in gauge theory is the 6-cohomology modulo d; the local 6.-cocycles
are obtained by integration of 6-cocyclesmodulo d on appropriatecycles in

space-time.
Let us be slightly more precise. Denote by C the spaceof gaugepotential

on n-dimensional space-timeM (with structuregroup G) and by ~2(M) =

~ ~7’(M) the spaceof differential forms on M; elementsa of C as well as infini-

tesimal gauge transformations~E Lie (G) and differential forms w E f~(M)are
considered as functions on M. Thus differential operators of C x (Lie (G))
in fV(M) are well defined objects.We denoteby ~ the spaceof differential

operatorsof C x (Lie (G))s in ~
T(M) whichares-linearantisymmetricin (Lie (G))

and polynomial in a; i.e. if w E ~ w(a; ~, . . . , ~) is a r-form on M which

dependslinearily of each ~k’ is antisymmetricin the bk’S and such that its value
at x EM only dependson the valuesat x of a, ~, .. . , ~ and a finite number
of their partial derivatives.We define a producton B” = ~ ~T,S sendingB” x

x B”” in ~r+r’,s+s’ by

(w w’)(a;~
1,

(~l)””
= (~1)~~w(a;~w(1) ~ Aw’(ct; ~w(s+ 1)’ - ‘

(s + s ).

where G~., is thegroupof permutationsof s + s’ objectande(ir) is thesignature
of irE w E ~3F~5and w’ E ~“ Elementsof ~“ are said to havebidegree
(r, s) and total degreer + s. With the aboveproduct~“ is a graded-commutati-
vealgebra for the graduationcorrespondingto the total degree(seebelowin 1.1
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for the definition of graded-commutativealgebras).On ~“ one definestwo
differentials d and 8 by (dw)(a;~ ~) = d(w(a; ~ s,)), where w E

E B” and d is the exterior differential in the left hand side,andby (Ow)(a;
~ ~) O~k~s k’~O’ -

~ ~ ~), where WE

E ~“, stands for omission and 0(e) is inducedby the (infinitesimal) right
action a F-’- d~+ [a, fl of ~E Lie (G). One has d2 = 0, 62 = 0, dO + Od = 0

dB”” c ~r+1,s and
8~r,sc ~?‘,S+1

d, 6 and d + 6 are threedifferentials on ~ d and 6 are homogeneousfor the
bidegree,d is of bidegree(1,0) and 8 is of bidegree(0, 1), while d + 8 is only

homogeneousfor the total degree(and of degreeone of course).d~*,*is stable
by 0 so dB** and B*~*/dB** are complexes for 8 and the 8-cohomology
modulo d on which we are interestedfor the problem of anomalousterms in

gauge theory is just the cohomology of B*~*IdB *~*; it is a bigradedspace.
Notice that onehasthe shortexactsequenceof (bigraded)0-complexes

0~+dB**ç ~ B*~*/dB*~*~÷o

and that, one theotherhand,onehastheexactsequence

0—p Z*~*(d)~ 4 d S ~ —‘- 0

and

0-* ~g*,* ~ Z**(d)..÷H*~*(d).40,

where H*~*(d)is the d-cohomologyof ~*,* and Z*~*(d)is thespaceof d-cocy-

des of ~*,* Thus triviality of the d-cohomology,i.e. H~~*(d)= 0, implies that
we havein positivedegreesa short exactsequenceof 0-complexes

0_s. (“/d~”) 4 ~*,* ~ (~**/~**) ~+0

where i is induced by d : -+ 5I~*~From this, we obtain,in cohomology an
exact triangle relating the 8-cohomologymodulo d and the 8-cohomologyin
positivedegrees

H*,* (~)

p;/’N<
H** (0, mod(d))

4H~~*(0, mod(d))

Actually we shall work in an algebra B** which is smaller that 5**; this
will be sufficientto work out all theknown examplesandis naturalin connection



THE WElL . B.R.S.ALGEBRA OF A LIE ALGEBRA, ETC. 529

with the index theorem. Let (E
0) be a basis of Lie (G) and let us introduce

A~: C -s. ~2’(M) and X~: Lie (G) -~-~2°(M) by Aa(a) = a° (rememberingthat
a gaugepotential is a one-form with values in Lie (G)) and by x°(~)= ~° (re-
memberingthat an elementof Lie (G) is a function with valuesin Lie (G)). By

definition the A°’s are elementsof B
1~0and thex°are elementsof ~ We

define B*,* to be the smallestsubalgebraof ~‘~‘~‘~‘ which is stableby d and by
8 and containstheAu’s and the xa~s;i.e. it is the subalgebraof 5*,* generated

by the A’~,dAn, 8A~,Xa, dx°and Oxn. Of coursethe elementsof B*,* are very
special types of differential operators,for instance they are of first order at

most,and it would be nice to be able to computeH*,~ (8, mod(d)); (the jjk,O

(8 mod(d)) contain more elementsthan the onescoming from 81t,0, the Yang-
-Mills lagrangian for instance,but onemay expectthat it is essentiallyall what

is lost by working with B”” insteadof 5*~*).
The action of d and 0 on the A” and the x°is convenientlydescribedby

introducing the following elementsof Lie (G) 0 B** :A = E
0® A°,dA = E~,o

®dAa, 8A=E~®OAa, X=E0OXa, dX=E0odXa and OX=EnOOXa. Then

onehas

1 1
(*)

2 2

where the bracket in Lie (G)® B*,* is definedby [Xow,X’® w’]=[X,X’]e
O WW’ for X, X’ E Lie (G) and W w’ E B*,* Notice that F= dA + ~-[A, A] =

= E,~oF°~with F~ C -÷~l
2(M) is given by Fa(a) = ~ç”(a)where ~°(a) is the

<<field-strength>>of a. More generally, givena Lie algebra~, any bigradedalgebra

B * ~, with differentialsd and 8, equippedwith an elementA + X of g o 5* * of
degreeone (A of bidegree(1, 0) andx of bidegree(0, 1) suchthat the equality

(*) holds, was called in [1] a B.R.S. algebra over g. Thus both the above ~“~“‘

andB*,* areB.R.S.algebrasover Lie (G).

One has an obvious natural notion of homorphismof B.R.S. algebrasover
g and it turns out that,in this categoryof B.R.S.algebrasoverg thereis a univer-
sal initial object A (~)which was calledin [1] the universalB.R.S.algebraof the

Lie algebra g andwhich we now call The Weil-B.R.S.algebra of theLie algebra

g; this latter terminology, suggestedby R. Stora, comes from the following
observations.On A (g) and on most B.R.S. algebrasoverg of interest thereis
a natural operation of the Lie algebra g in the senseof H. Cartan[10] (see the
definitions in 1 .3, 1 .4) so we also have the notion of a B.R.S. operation; this
is just a bigradedCartanoperationwith an algebraicconnectionsatisfyingthe
above identity (*), Then A (g) plays the samerole with respect to B.R.S. g-
-operationsas the one of theWeil algebraU) (g) with respectto g-operationswith
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connections(again seethe sections 1 and 2 for the definitions andexamples).

In fact A (g) contains W (g) (and even a one-parameterfamily W ~(g) of Weil
algebra)and is just what is neededto generalizeCartanmaps(by the <<descent
equations>>)and transgressions.Thisgeneralizedtransgressionleadsto the compu-

tation of the 8-cohomology modulo d of 4(g), [1] which we shall describe.

In the case of B*,*, the canonicalhomorphismof 4(g) in B*,* is surjective
and inducesisomorphismsof vectorspacesin bidegrees(r, s) such that r ~ n =

= dim (M), [1]; it follows that the 6-cohomologymodulod of B*,* is complete-

ly known from theone of A (g).
As it is well known gaugepotentialsare connectionson thetrivial G-principal

bundle M x G seen in the sectionx F-s. (x, 1) correspondingto the trivialisation.
For a non trivial G-principal bundleP overM onemay generalize,(and this will
be done below), the constructionsand, as explainedin the reference[20], one
has a similar correspondencebetweenthe local cohomology of the Lie algebra

of the group of gaugetransformations(infinitesimal automorphismsof F) and

the 0-cohomologymodulo d by introducing a referenceconnection a0 on P.

In the caseof the trivial bundle one choosesimplicitely a0to bethe flat connec-
tion correspondingto the tnvialisation in order to identify the affine space C

of connectionswith the vectorspaceof differential one-form on M with values
in Lie (G).

Our notationsare standardexcept that herean associativealgebrais assumed

to havea unit, (genericallydenotedby 1), exceptotherwisestated;for instance
whenwe speakof a subalgebrageneratedby someelements,it meansthe smallest

subalgebrawith unit whichcontainstheseelements.
A very complete referencefor the notions of operations,Weil algebrasand

the cohomologyof Lie algebrasis [11]; for homology,beside[11], all what we
useis described,for instancein [12], [13].

1. CARTAN OPERATIONS, WElL ALGEBRAS AND TRANSGRESSIONS

1.1. Gradedcommutativedifferentialalgebras

All vector spaces,algebrasetc. . . consideredhere are on the field lR or on
the field C. A gradedalgebra will be an associativealgebrad equippedwith
a graduationover the integers IN, d = e~.cd”,suchthat the productsatisfies

d’~.d” C d’~’~ The elementsof d~’are called homogeneouselementsof

dof degreen. A linear mapping L of d in itself is said to be homogeneous

of degree k, (k E ~), if L(d”) c d” +k for any n E IN. A derivation of d is
a homogeneouslinear endomorphism0 of d of evendegreesatisfying0(xy) =

= (x)y + xO (y), Vx, y E d. An antiderivation of d is a homogeneouslinear

endomorphism0 of d of odd degreesatisfyingO(x . y) = 8(x)y + (— 1)” x 8(y),
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Vx E sd~,‘dy E d. Derivationsand antidenvationsare calledgraded-derivations

of d; they form a ~-graded Lie algebrafor thegradedcommutator.Indeedif
and 02 are two derivations and if 61 and 62 are two antiderivations,then

0102—0201and 81 62 + 6261 are derivations and 0, 6~—61 0. are anti-deriva-
tions.

A gradedalgebrad is said to begradedcommutativeor to bea gradedcommu-

tative algebraif for any am Ed”~and ~3,,Ed~onehasam = ~ ~ ~‘3
(n, m E IN).

A differential on a graded algebrad is an antidenvationof degreeone d of

d satisfying d2 = 0 and a graded algebraequippedwith a differential is called
a graded differential algebra. If (d, d) is a graded differential algebra,an ele-

ment A of d is calleda cocycleif dA = 0 (i.e. A E ker(d)); if A E d dthen A

is a coboundaryof d; coboundariesare, of coursecocyclesin view of d2 = 0.
The set Z(d) of all cocycles of d is a graded subalgebraofd, (Z(sd) =

= ~ Z”(d), Z’~(d)= Z(d) n d’s), and the set B(d) of all coboundaries
nEIN

of d is a two-sidedgradedideal of Z(d). It follows thatH(d) = Z(d)/B(d)
is a graded algebra which is called the cohomology algebra of d; H(d) =

= 0 H”(d) where H”(d) = Z”(d)/B”(d) is the n-th cohomologyspace
nEIN

ofd, If d is a gradedcommutativedifferential algebra,thenH(d) is a graded

commutativealgebra.
Given two gradedalgebrasd

1 and d2, the vectorspaced1 ® d2 becomesa

gradedalgebra if we define the graduationby (JI~®d2Y’ = “~d~’ ®d;—
m

and the product by (x
1a x2) . (y1® y2) = (_ l)mnx1y1® x2y2 for x2Ed~,

y1Ed?, x1E d1 and y2E d2, d1 ®d2 is the tensor product of the graded
algebras d1 and d2. If d1 and d2 are gradedcommutativethen 0 2 is
also graded commutativeand this is the very reason for the appearanceof the

(~l)mn in the definition of the product. If and d2 are gradeddifferential
algebraswith differential d1 andd2 then O becomesa gradeddifferential
algebra if we define its differential d by d(x10 x2) = d1x1® x2 + (— l~

2x
1a

O d2x2 for X1EJ?1’ andx2Ed2 Furthermoreone hasH(d1a d2)=H(d1)o
O H(d2).

Notice that if d is generatedbyd° andd 1, thena derivationoranantideriva-
tion of d is fixed whenits valuesond

0 and r11 are known.
In the rest of this lecture,we shall be interestedonly in gradedcommutative

differential algebras(althoughmany of the following conceptsmakesensealso
in thegradednon-commutativecase).

An exampleof graded commutativedifferential algebrais the de Rhamcom-
plex of exterior differential forms ~Z(M) on a manifold M, the corresponding
cohomology algebra H(~7(M)) = H*(M) is the de Rham cohomology of M.
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It is well known and easyto checkthat dim H°(~l(M))is the numberof connect-
ed componentsof M, in particularH°(~2(M))= IR (or C if oneconsiderscomplex
valued forms) if and only if M is connected;this is the origin of the following

terminology. A graded commutativealgebrad is said to be connected(or con-

nectedin degreezero) if d° is the ground field 1K (1K = IR or C), i.e. d= K 0

ed+, whered+ denotes 0 d”.
n~i

A connectedgraded commutativealgebrais said to be free if thereis a finite

set of homogeneouselements{e
0} of d~which are free of algebraicrelations

beside graded commutativity and which generated+, (i.e. any elementof d~
is a linearcombinationof productsof the eu’s).

Let us say a few words on the structureof the free connectedgradedcommu-

tative differential algebras.An exampleof such an algebrais the free connected
graded commutative algebra ‘~‘(x,dx) generatedby an elementx of degree

n ~ I and its differential dx. If n is odd x
2 = 0 so a basis of ~(x, dx) is 1, x,

dx, xdx, dx2 (dx)’1, x(dx~’,. . - and if n is even(dx)2 = 0 so a basis of

~2(x,dx) is 1, x, dx, x2, xdx x’~+ 1, x”’ dx, . . - therefore,in any caseall
cocycles in ~ dx) are coboundariesso H(~’(x,dx)) = H0(~(x,dx)) = 1K.

By definition a contractible [14] (differential) algebra is a tensorproduct C=

= ~(x
1, dx1)n .. . ®~‘(x~,,dx1,) of algebras of the above type; for such an

algebra we have H”(C) = 0 for n ~‘ I and of course H°(C)= 1K (the ground
field). Another prototype of free connectedgraded commutative differential

algebra is a differential algebra,AV which is free connectedgradedcommutative
and such that d.A~1 C ~ ./If~ such a differential algebrais called minimal.
Onehas the following theorem:

THEOREM 1. Every free connected graded commutative differential algebra
is isomorphic to the tensor product of a unique minimal algebra and a unique

contractiblealgebra [14].

Later on, we shall have to computethe cohomologiesof such algebrasand
the strategywill be to throw away the contractible parts and to identify the
minimal partswith <<known objects>>.

1.2. Cohomologyof Lie algebras

a) Finite dimensionalLie algebras.The structureof the contractiblealgebras
is completely apparentfrom their definition; let us now describe the simplest
non-trivial minimal algebras[14], namely the oneswhich are generatedin degree
one. Such an algebra~# being graded commutativeconnectedand free is neces-
sarily the exterior algebraA,~4Y’overthe finite dimensionalspace~,II1of elements

of degreeone of ~#, (i.e. .~.#= A.J1
1) and sinceit is minimal we haved.~’C
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C ,Jjll .A’~’1= A2 .
1W1. Let g be the dual spaceof .411, so..’W

1 = ;* = ((,,gyl)*)*

(since thesespacesare finite dimensional).By transpositionof the linear map
d : g* ~+ A2g*, one definesan antisymmetric bilinear bracketon g by writing
dw(X, Y) = — w([X, Y]) for any X, YE g and any WE g* = .,Wl. Then,one

easily verifies that d2 = 0 on A ~* (togetherwith theantiderivationpropertyof d)
is equivalentto theJacobiidentity

[X, Y], Z] + flY, Z], X] + [Z, X], Y] = 0, X, Y, Ze g.

Thus any minimal algebrawhich is generatedin degreeone is theexterioralgebra

over the dual spaceg* of a finite dimensionalLie algebrag. Converselylet g be
a finite dimensionalLie algebra,defined : g* ~+ A2 g* by (the co-bracket)dw(X,
Y) = — w([X, Y]) and extend it as antiderivation of the gradedcommutative
algebraA g*; then the Jacobiidentity implies d2 = 0 on g* and therefored2 = 0

on Ag* (since d2 is a derivation vanishingon the generators).Thedifferential
algebra Ag* so defined is obviously minimal and generatedin degreeone.By
definition the cohomologyH*(g) of the (finite dimensional)Lie algebra g is
thecohomologyof the differentialalgebraAg*.

b) Relationwith the de Rhamcohomologyof Lie groups. Let us now assume

that g is the Lie algebraLie (G) of a connectedfinite dimensionalLie group G.
Then,g identifies (by left translation)as the left-invariant vectorfields on G so

Ag * identifies with the algebra of left-invariant differential forms on G. It is

easyto show that this algebra is stableby exteriordifferentiationand that the
exteriordifferential coincidesthere with the above defined(in a)) differential

on Ag*. ThereforeAg* identifies with a differei~itialsubalgebraof the algebra
~(G) of differential forms on G. Thisinclusioninducesin cohomologyanhomo-
morphism i ~ : H*(g) -4 H*(G) of the cohomologyof g = Lie (G) in the de Rham
cohomology of G which is known to be an isomorphismwhen G is compact
[15]. Thus for a connectedcompactfinite dimensionalLie groupG, H*(Lie (G))

is the de Rhamcohomologyof G.
c) Co-adjoint actionsand the caseof reductiveLie algebras.Let g be again

a finite dimensionalLie algebra.g actson itself by theadjoint representation; by
duality thereis a correspondingaction of g on its dual g* calledthe co-adjoint
representationwhich extendsto Ag* as a Lie-algebrahomomorphismX -+ L~
(XEg) from g in the Lie-algebraof derivations(of degreezero) of Ag*.There

is anotherway to describe the situation which will becomeof importancein
the next paragraphwhich is the following. For any X E g let i~be the unique

antidenvationof Ag* such that i~.w= w(X) for w E g* (= Alg*) and define
the derivationof degreezeroL~of Ag* by L

1 = di1 + i~d,(1) we have;

(2) L1~~1L1L~LyL~
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(3) Lxiy_iyLxi1xy1

for any X. YEg. Furthermore, (L1w)(fl= w([Y,X]) for wEg*, so L~
induces the co-adjoint representationon g* and therefore coincideswith the

previouslydefinedL1. One hasL~d = dLi, ‘c/X Eg. Let ea bea basisof g with
dual basis e~iof g* (i.e. ea(e~)= O~),thenone easily verifies theKoszulformula

[16]

(4) dw= — E eaALe(w), VWEAg*.
2 a a

Onecalls invariant form on g an elementwE Ag* suchthatLxw = 0 for any
XEg. The space ,~(g)of invariant forms on g is a gradedsubalgebraof Ag*
which, in view of the aboveKoszul formula, consistsof cocycles;thereforewe
havea canonicalhomomorphism .

9~(g)-+ H*(g). Notice that when g = Lie (G)
(with G connected)and Ag* is identified with left-invariant forms on G (as in

b)), then ~9~(g) identifies with bi-invariant forms on G (i.e. invariant by left
andright translations).

By definition, a reductiveLie algebra is a Lie algebrawhich is the direct pro-

duct of a semi-simpleLie algebraand an abelianLie algebra.Fora reductiveLie

algebrag the canonicalhomomorphism ~9~(g)-4 H”(g) is an isomorphismso
the cohomology of g may be identified with the algebra ~9~(g) of invariant

forms. Furthermoreif g is reductivethereis a finite dimensionalgradedsubspace
P = P(g) of .9~(g)the dimension of which is the rank of g, which has only

homogeneouselementsof odd degree(P = I.e p2k + 1) and which is such that

the graded commutative connectedalgebra .9~(g)is freely generatedby any
homogeneousbasis of P(g), [16]. Thus in this case Y~(g)is isomorphic with

the exterior algebraAP(g). The elementsof P(g) are calledprimitive forms on
g.

d) The infinite dimensionalcase.We will be interestedin the Lie algebraof
the group of gaugetransformationswhich is infinite dimensional,so let ussay

a few words on the infinite dimensionalcase. If g is infinite dimensional,it is
againtrue that the Lie bracketdefinesa linearmappingfrom A2g in g andthat,
by duality we havea linear mapping d : g* -+ (A2g)* from the linear forms in
the antisymmetric bilinear forms on g by writing dW(X, Y) = — w([X, Y]),

Vw E g* and VX, YE g, but now A2g* is only a subspaceof (A2g)* anddw
doesnot belong generally to this subspace.So one introducesthe spacesC”(g)
of n-linear antisymmetricforms on g andonedefineson the direct sumC*(g) =

= ~ C”(g) a structureof graded-commutativedifferential algebraby writing
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(a - 13)(X1,...,~ = E (— l)”~~a(X~(1)X~)
(r s). lrEG,+,

13(X( 1)””’

for aE C
T(g), 13 E C’(g), X

1 ~ g, ~ being the groupof permuta-
tions of r + s objects and e(ir) being the signatureof irE ~ andby writing

foraEC”(g)

Xr+ i~= ~ (— l)P4~~a(1Xp,Xq1,t1,...,Xq,...,Xp~1).
1~p<q~r+ 1

Again d
2 = 0 is just the Jacobiidentity. Ag* is a graded subalgebraof C*(g)

which coincideswith C*(g) wheng is finite dimensional;but when, g is infinite

dimensional,Ag* is a strict subalgebraof C*(g) which is generallynot stable

by d. In any casethe cohomologyH*(g) of g is definedto be the cohomology
of C*(g).

As it is well known (see e.g. in [11]) thesedefinitions may be generalizedin

order to include the cohomologyof g with values in representations.Namely
given a linear representation0 of g in a vectorspace.11, one definesthe space
C”(g,A”) of n-cochains of g with valuesin .41 to be the spaceof n-linear anti-

symmetricmapping of g in .41, oneintroducesthen on the gradedvectorspace
C*(g,~) = ~ C”(~,Af)a linear mappingd of degreeoneby

da(X
0,...,X~)= ~ (— 1 )kO(Xk)a(X X~)+

+ E (— 1)’~
ma([X

1, Xm], X0 .~,..., Xm,..., X~)
o~l<m~n

for aEC”(g,J() and X0 X~Eg.One has again d
2=0 so

= Ker (d)/Im (d) is a graded vector spacewhich is called the cohomologyof
g with valuein ~. In the casewhere ..I( is an algebra A and0 is a homomor-

phism of g in the Lie algebraof derivationsof A then C*(g, A ) is in a natural
waya graded differential algebraso H*(g, A) is a gradedalgebra;when A is
commutativeC*(g, A) and thereforeH*(g, A) aregraded-commutative.

1.3. H. Cartan’snotion of operationof a Lie algebra

Let G be a finite dimensionalconnectedLie group and P be a G-pnncipal

bundle over a (finite dimensional)manifold M. The projectionir :P -÷M induces
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an injectivehomomorphism of differential algebras, ir”‘ : ~L(M)—s-~7(P),from

the algebra~Z(M)of differential forms on M into the algebraf2(P) of differential
forms on P. Thus &2(M) naturally identifies with the differential subalgebra

ir*(~7(M))of �7(P); this subalgebrais called the algebra of basicforms on P. A
differential form on P is basicif andonly if it is invariantby the(right) actionof
G on P andhorizontal, (i.e. it vanisheswheneveroneof thevectorson P to which

it is appliedis vertical). Thereforelr*(&l(M)) ~Z(M) is algebraicallyspecifiedin
~.7(P).A convenient way to describe the situation is the following one.The
infinitesimal action of G on P gives an injective homomorphismfrom the Lie

algebra Lie (G) of G into the Lie algebraof vector fields on P. Furthermore,
the image of Lie (G) spansat eachpoint of P the tangentspace to the fiber
(i.e. the space of vertical vectors). For any XE Lie (G) let i~and L~denote

respectively the interior antiderivative and the Lie derivativeon ~2(P)by the
correspondingvectorfield. We havethe usualrelations

(1) Lxdix+ixd

(2) L1xy1LxLyLyLx

(3) itx,Y]=LxiYiYLx.

An elementw E ~2(P) is invariant by the actionof G on P iff. L1w = 0 YX E

E Lie (G), it is horizontal iff. w = 0 VX E Lie (G), so, w is a basicform iff.
L~w = 0 and i~,w = 0 for any X E Lie (G).

Following H. Cartan [10], [Il], let us generalizethe abovestructurerelating
Lie (G) and~2(P)by the following definition.

DEFINiTION 1. Let g be a finite dimensionalLie algebraand let d be a graded

commutative differential algebra. One says that g operateson d if we have

a linear mapping i of g in the antidenvationsof degree— 1 of d suchthat if
for X E g we definethe derivationL~of degree0 of d by

(I) Lxdix+ixd,

we havefor anyX, YE g

(2) L1~,y1L1Ly_LyL1

(3) i1~~1Lxiy_iyLx.

The pair (d, i), or simply d when thereis no confusion,will be called a g-
-operation. If (d, i) and (d’, i’) are two g-operations,a homomorphism~,1i

d—s- d’ of differential algebras will be called a homomorphismof g-opera-

tionsif we have:
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ij~(w)= i~l(i~w), VXEg and VwEd. •

As alreadyseen if G is a connectedLie groupandP is a G-principal bundle

then ~2(P)is canonicallya Lie (G)-operation.If P’ is anotherG-principalbundle
then an homomorphism of Lie (G)-operations, ~ : fZ(P) -± ~2(F’), just cor-
respondsto a G-principal bundle homomorphism,a :P’—s.P, by pull-back, i.e.

= a”. Therefore the above notion of operation generalizesthe notion of

principal bundle. We now want to generalizecorrespondinglythe notion of
connection.To do that one notices that a connectionon a G-principal bundle
P is given by a connection form; this is a Lie (G)-valued differential 1-form
A, i.e. A E Lie (G) o fl ‘(F), suchthat i~A= X (verticality) andL~A= AX — XA
(equivariance) for any X E Lie (G). This generalizesimmediately; let (d, i)
be g-operation,an algebraic connectionon d (or simply a connection)will

be an elementA of god’ suchthat i~A= X andL~A= [A,X] for anyXE g.
In the aboveformula ~ L,,~are definedon ga d by ix(Yo cx) = Yo i1a and
L~(Yoa)= Y®L1cx for X, YEg and aE d and one defines a bracketon
g o d extending the Lie bracket of g by [Xo a, Yo 13] = [X, Y] o a 13 for
X, YE g and a,13Ed;similarly one definesd ongo dby d(X®a)=X®da
for X E g and cx Ed. With thesenotationsone definesthe curvatureF of A to

be the elementF = dA + -~[A, A] of g ad 2~From the definitionsit follows
that we have ixF= 0 (horizontality) and L1F= [F, XI equivariancefor XEg.

Let d be an arbitraryg-operationanddefinethe following subspacesof

J~°(d)={aEdIixa=0, VXEg}

9’(d)={aEdlLxa=O, VXEg}

~J(d)={aEdIixa=0, and Lxcw=0, VXEg}=

= ~°(d) n .9(d).

j~°(d) is a gradedsubalgebraof d which is stableby L~,forXE g, 9(d) is a

graded differential subalgebraofd , ~(d) is a gradeddifferential subalgebra
of Y(d) and thereforealso ofd. The elementsøf ~~°(d) are calledhorizontal
elementsofd, the elementsof ~9(d) are called invariant elementsof d and

the elementsof ~(d) are called basic elementsofd. This terminologyof
course comesfrom the examplewhere g = Lie (G) with G connectedandd =

= ~Z(P)whereF is a G-principalbundle.

In the following, we shall have to consideroperationswhich are not of the
type ~(P), (P a principal bundle). Notice that, in 1.2 c), we alreadymet a g-

-operation which is not of the type &~(P),namely Ag*, andthat, furthermore,
there is on this g-operationAg* a canonicalconnection,namely the identity
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mappingof g on itself consideredas an elementof go g* = g o ~ g* C g o A g*.
Let d be a g-operation,let E be a set and let Map (E,d) be theset of map-

ping f:E-s. dof E in d: Map (E,d) is also a g-operation if we define the
graduationby Map~(E,d) Map(E,d ?~),the product by (f~ g)(e)= f(e) . g(e)
for eEE and f, gE Map(E,d) (i.e. the pointwise product), the differential

by (df)(e)= d(f(e)) for eEE and fEMap(E,d) and if we define i~,by
(ixf)(e) = i~(f(e)) for XE g, e E E and fE Map (E,d). Let us assumethat

dadmits connections,(i.e. thereis at least one). The set C of all connections
on d is canonicallyan affine space;let us considerthe g-operationMap(C,d).
We claim that thereis a canonicalconnectionA on Map (C ,d) which is defined

by the following; A is the identity mappingof C on itself consideredas a mapping

of C in go d’ by using (or by compositionwith) the inclusion C C g o d’.
ThusA so definedbelongsto Map(C,g od’)= g oMap(C, d’)= g ®Map’(C,

d) and one easily verifies that it is a connectionon Map (C,d), (i.e. i~A= X
and L~A= [A, X], VXEg). Since C is an affine space,thereis a well defined
notion of polynomial mapping of C in d; let us denoteby P(C,d) the space

of all these polynomial mappings. P(C,d) is a graded differential subalgebra
of Map(C,d) and the operationof g on Map(C,d) restrictsto P(C,d) so

P(C,d) is a g-operation;furthermoreA E goP(C,d) so it is a connection

on P(C, d), (again called the canonical connectionof P(C,d)). There is yet
a smaller g-operationwith connectioncontainedin Map (C,d) whichwe now
describe.Let Ac~be the componentsof the canonicalconnectionwith respect
to some basis En of g , (i.e. A = EaOAn), AaEMap (C, d1) = Map’(C, d),
and let B*~O(d)be the smallestdifferentialsubalgebraof Map (C, d) containing

the A°~s.B*~O(d)is generatedby the Aa~sandthe dAa~swhich belong to P(C,
d) so 8*O(d) C P(C, d). Moreover, B*O(d) is stableby the operationof

g and,by constructionA is in go B “°(d) so, since 8*O(d) = ~ 8”°(d) is a

graded subalgebraof P(C,d), B*O(d) is a g-operationwith connectionA.
All theseconstructionsapply when g = Lie (G) and d = ~2(F)where G is a

connectedLie groupandP is a G-principal bundleoverM. In this case,we denote

8*~O(f~(F))simply by B*O(P) and there is anothernaturaloperation5*~O(P)
which is a little biggerthan B*~O(P). ~*~O(p) is theset of all polynomialmapping
a of C in f~(P)suchthat the valueat ~E P of a(a) for aE C only dependson the
valuesat ~ of a andof a finite numberof derivativesof a (a E Lie (G) ®

In the case where F is the trivial bundle G x M with dim (M) = n, integration

of E ~“’‘°(G x M) on M yields <<local polynomial functionals>> on C via (here
Mis identified to e x M, e is the unit of G)

F(a)= cx(a), aEB”0(GxM), aEC.
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1.4. TheWell algebraof a Lie algebra

Let g be a finite dimensionalLie algebraand let I/i : d -# d’ bea homorphism

of g-operations;we again denoteby 1/i the linear mappingof g ® d in go
definedby ‘.j’ (X o w) = X ® i,L’ (w) for XE g and w E d. With thesenotations,
if A is a connectionon d then ,Li(A) is obviously a connectionond’~Which

will be called the image of A by ~,ti.If d and d’ areequippedwith connections
A and A’ respectively the homomorphismof g-operations~/ : d-* d’ will be

called a homomorphismof g-operations with connectionsif A’ = 1/1(A). It
turns out that, in the category of g-operationswith connections,there is a
universalinitial object, called the Weil algebra of g anddenotedby U) (g), which
wenow describe.

As usual here we considerthe symmetric algebra Sg* over the dual space
g* of g, (i.e. the algebraof polynomialson g), to be evenly gradedby writing
(Sg*)2~~= S~~g*and (Sg*)2~~+ ‘= {0}. With this convention Sg* is a graded

commutativealgebra and we define the graded commutativealgebra U) (g) by

U)(g) = Ag*o Sg*. In the following (En) will be an arbitrarybut fixed baseof
g with dual basis (En). Introducingthe elementsA~and F~of W(g) definedby

= E’~o1 and F~= 11 ®Ea, we seethat U) (g) is just the free connectedgraded

commutativealgebrageneratedby A~~sin degreeoneand theF~~sin degreetwo.
Let us introduce the elementsA and F of go W(g) by A = ~ En® A’~andF=

= ~ E,:~,®Fc~and define dAt’ and dF”by dA = ~ E~,®dAc~and dF= ~ E,,® dF~

with dA = — ~- [A,A]+Fand dF= —[A,F].dextendsuniquelyasantidenva-

tion of W(g); d is of degreeoneand d2= 0, (sinc~ed2A”= 0 and d2P = 0), so
W (g) equippedwith this differential is a (free) gradedcommutativedifferential
algebra.One defines, for X E g, and antiderivationi~of 0) (g) by ~x~‘~“) = X~
and i~(F”)= 0. It is straightforwardto verify that, equippedwith i, 0) (g) is a

g-operationand that A is a connectionon it with curvatureequal to F; this
g-operationwith connectionis calledtheWeil algebra ofg. Onehasthe following

theorem.

THEOREM2. (Universal property of W(g)). For any g-operation with connec-

tion d, there is a unique homomorphismof g-operationswith connectionsof
w(g) in d.

Indeed if a= ~ E o a~’denotes the connectionof d and f= ~ E 0 f~ is
a a a n

its curvature,any homomorphism1/i of g-operationwith connectionsof 0) (g)
in d must satisfy 1/i (A ~) = an (the connectionis mappedon the connection)
an i/i (Fn) = ~ça (the differential of A’~is mappedon the differential of an).Now,
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by the universal propertiesof the.exterior algebra,the symmetric algebraand
the tensorproduct,thereis a unique homomorphismof algebraof U) (g) in d sa-

tisfying the aboveconditions; this homomorphismi/i is, as easily seen,a homo-
morphism of g-operationswith connections.This unique 1/i : 0) (g) -4 d will be

calledthe canonicalhomomorphismof U) (g) in d. •

Although the differential of 0) (g) restricted to Ag* o 1 does not coincide
with the one defined in 1.2 a) on Ag* (sinceAg * ® 1 is not stable), the deriva-

tions L~= ixd + dix (XE g) coincideon Ag*o 11 with theLx’s definedin 1.2 c)

on Ag*; i.e. it is inducedby the coadjoint action of g on g*. Similarily one
verifies that 1 o Sg* is stable by the Lx and that the correspondingderivations
of Sg* are also inducedby the coadjointaction g on g*. Let ~T0)(g)be the set

of invariant elementsof CQ(g) (i.e. ,~
3rw(g)= .9’(U)(g)) and let ~~(g) be the

set of invariant polynomials on g. We have .9~(g)o .~T~(g)C 9~(g),(in fact

11 = (Ag” o 1) fl .9~(g), 11 o .9~~(g)= (11 ® Sg*) n .9~(g)as shown
above),but is is worth noticing that this inclusionis strict.

From the very definitions, it follows that 1 ® Sg* is the set of all horizontal

elementsof U) (g), (i.e. 11 0 Sg* = Ye°(W(g))), so the set of all basicelementsof
IQ(g) is just IL® .9~(g).(i.e. 1 ® .9~(g)= ~(U)(g))). Furthermorelo
consistsof cocyclesof 0) (9) andwe havethe following result.

THEOREM 3. Thefollowingconditionsare equivalentfor w E U) (g)

(i) w is basic
(ii) wis oftheform 11 ®FwithPE ~9~(g)

(iii) w is of theform IL ® Pand d w = 0.

Let d be a g-operationand let us denoteby HB(d), and call basic cohomo-
logy ofd , the cohomology algebra of the graded commutative differential

algebra .~(d) of basic elementsof d. From theorem3, it follows that we have

HB(W(9)) = i~J(W(g)) = .9~(g)with H?(W(9)) = .~(g) and H? + i(U) (g)) =

= {0}, where ~‘~(g) denotesthe spaceof homogeneousinvariant polynomials
of degreek on g, (rememberingthat the correspondingelementsof ~(W(g)) C

C U) (g) are of degree 2k for the graduationof U) (g)). One has the following

theorem.

THEOREM 4. (Weil homomorphism).Let and a
1 be two connectionson the

g-operation d and let i/i0 and i/i, be the correspondingcanonical homomor-

phismsof U)(g)in d with i/i0(A) = c<.,~, /i,(A) = a1. Thenthe correspondingindu-
cedhomomorphismsi/’~and i/it in basic cohomologycoincide.
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I.e. one has,wheneverd admitsconnections,a homomorphismw : ,9~(~)-+

-4 H~(d),with wC9T~(g))C H?(d), which is called the Weil homomorphism
and is induced by the canonical homomorphismof U) (g) in d associatedwith

any connectionon d.
l’he proof of this theoremgoesas follows. Oneintroducesthe one-parameter

family of connectionsat = (1 —t)a
0+ ta1, tE[0, 1], with curvature and

the correspondingi/i~ : W(g)-÷dwith i/I~(A)= a~by restriction to 10 .9~(g)
one has homomorphisms i/i~ : ~(g) ~ g~

2lc(d),i/1~CfT~(g))consisting of

cocycles. For PE.9~(g), ~~(P)=P(f
1,. .. ,f~) and ~

— ~J)~where P(a1 — a0, ~ . - , ~) is, as easily verified, in ~(d).
therefore one has i/i1(F) — iJi0(P) = d kP(a1— a0, ~, . . . , ~) dt which shows

that /i,(F) and i/i0(P) havethe sameimagein HB(d). •
It is well known that a G-principal bundleF admitsconnections,or which is

the same,the Lie (G)-operation~Z(F)admitsconnections;in this casethe above
result is the familiarWeil homomorphism(seein [17] for instance).

Onehas U)(g) = (Ag* o 1) 0 (Ag* ® S+g*), whereS~g* = kC Sg; further-

more Ag*o S+g* is a graded ideal in U)(g) stable by the differential and by
the ii’s (XE g). W(g)IAg* ® S~g”’is canonically isomorphic as gradedalgebra
to Ag* and it is easy to see that the correspondingcanonical projection
p : W(g) -~Ag* is an homomorphism of graded differential algebrasfor the

structureof differential algebra definedon Ag* in 1 .2 a), and that p is in fact
a homomorphismof g-operations,for the structuredefined on Ag* in 1.2 c)

which maps the connectionof 0) (g) on the canonical(flat) connectionof Ag*
defined in 1.3. We shall refer to this surjectivehOmomorphismof 9-operations
(with connections),p : U) (g) -+ Ag* as the canonical projection of U) (g) on
Ag*.

Notice that an alternativesystemof homogeneousfree systemof generators

for U)(g) is the A”s and the dAa~s;therefore U)(g) identifies as gradedcommuta-
tive differential algebrawith the contractiblealgebra® ~ dAn), (seein 1.1),

so its cohomologyis trivial. Onehasmoregenerallythefollowing theorem.

THEOREM 5. The cohomologyalgebras H(U)(g)) and H(~T0)(g))of U)(g) and
ofthesubalgebra ~T0)(g)are trivial.

I.e. one has H”(U)(g)) = 0 and Hk(~0)(g))= 0 for ~ land, of course
H°(W(g)) andH°(9’0)(g))identify with the groundfield 1K. •

We already known the result for H(U)(g)) and to show it for H(30)(g))
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considerthe unique antiderivationh of U) (g) satisfyingh(An)= 0 andh(dAn)=
= A~.We havehL1= L~h for XE g (sincethis holdson the generatorsA~,dAn)
and the derivation dh + hd satisfies (dh + hd)A~= A~,(dh + hd)dA~= dAn;

so dh + hd is the <<degreein generatorsA’~,dAn>> and thereforeh gives acontrac-
ting homotopyfor d on U) (g~and also on .90)(gY sinceit commuteswith the

L~’s(XEg). •
Let F be an invariantpolynomialon g, FE .Y~(g).ThenlOPE U)(g) is closed

and belongsto Y0)(g) in view of theorem3 and therefore,is of the form 11 ® F =

= dQ with Q E .9~(g)in view of theorem5. Let us considerthe imagep(Q) of
Q by the canonicalprojection;p(Q) is an invariant form on g, i.ep(Q) E

since Q E .90)(g). If Q’ E .
9~(g)is suchthat I oF= dQ’, then d(Q — Q’) = 0

so, againby theorem5, Q — Q’ = dL for someL E J
0)(g). It follows thatp(Q) —

—p(Q’) = dp(L) = 0, since p(L) is an invariant form (see in 1.2 c)), and thus
p(Q) doesonly dependon F; onedenotesby p(P) this elementp(Q) of ~

This linear mapping p : .~(g)—÷ .~(g) from the invariant polynomials on

g in the invariant exterior forms on g is the Cartan map.One haspC.9T~(g))C

C 5~”~’(g)since FE .9~(g)implies 1 o FE ~~1~~k(9)so Q as above is in

~~2~k_i(9) and thus p(P) = p(Q) E .~~‘(9). One has the following deep
result [10], [181.

THEOREM6. Supposethat g is a reductive Lie algebra. Then the imageof the

Cartan map, p :
3~(g)-~.9~(g).is the subspaceF(g) of ‘9A~Ø~of primitive

forms on g (seein 1.2 c)). The kernelofp is thespaceofdecomposableelements
of ~

I.e. elementswhich are linear combinationsof productsof several elements

of..9~(g).

DEFINITION 2. Let g be a reductive Lie algebra.A transgressionis a linear map-

ping r : P(g) -÷ 5~(g) such that r(P2~’+ ‘(g)) C .9T,~+ ‘(g) and that p r is the
identity mappingof P(g) on itself (p beingthe Cartanmap).

By choosinga homogeneousbasisof P(g),oneeasily constructssucha trans-
gressionby fixing, for eachelementof the basis,an homogeneousinvariantpoly-

nomial of the appropriatedegreewhich is mappedby p on this elementof the
basis. Thus transgressionsexist and are generally far to be unique.Let T be a
transgressionand (w

1) (i E {l, 2 rankof}) be a basis of F = F(g); then it
follows from the last theoremthat ther(w1)’s (and 11) freely generatethe algebra

of invariant polynomialson 9, i.e. ~9~(g)identifies with the symmetric
algebraSr(P) overr(P) .9~(g)= Sr(P) SP.
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Finally let us introduce the following terminology:An elementQ of 50)(g)

is said to be a transgressioncochainif dQ is in 1 ®
3~(g)C W(g).

A representation0 of g in a vectorspaceAl is calledsemi-simpleif any inva-
riant subspaceof Al(by 0(X), X E g) admits a supplementaryin A? which is
also invariant; the subspaceof invariantelementsof .11 will be denotedby At”.
We sawthat if g is a reductiveLie algebraits cohomologyidentifieswith

this generalizesto cohomologywith valuesin A?’, H*(g, .41), forA’ semi-simple
by the following [11]: If g is reductive and (0, /1) semi-simple, H*(g, A?)

identifies with At’1 ® 3~(g). This applies of course if It’ is the algebraSg”
of polynomials on 9, thus, for g reductiveH*(g, Sg*) = ,9:c(9)® ~A~9) =

= Sr(F) ® AF SF o AP (r beinga transgression).

Warning. As algebras C* (g, Sg*) and U) (g) coincide (g being finite dimensional)

but their differential are different, C*(g, Sg*) is a minimal differential algebra
(generatedin degreesone and two) while U) (g) is a contractible differential

algebra.We will often usethe symbol ~ to denotethe differential of C*(g,Sg*)
in order to distinguishit from the differential of 0,/(g) which we continueto
denoteby d. With the notationsof the beginning of this paragraph6 reads6A =

= —4 [A,A] and 6F= —[A,F]. Notice also that whenwe say that C(g,Sg*)
is a minimal algebrawe usethe graduationof theWeil algebrai.e. C~(g,S’~g*)C

C ~m +

Let us considerthe trivial G-principal bundleM x G whereMis n-dimensional
(n-dimensionalspace-time);then,by restriction to the sectionx i-~(x, 1) corres-

ponding to the trivialization, any elementof B *~O(Mx G) gives an elementof
the subalgebraB*,O = ~ B”°of the algebra 8*,* describedin the introduction.
Furthermore, this mapping is a suijective homomorphismof graded algebra

mappingthe differential of B *.O(M x G) on therestrictionto B*,O of thedifferen-
tial d of B*,* and the connectionof B*~O(Mx G) on the elementEn® A~of

Lie (G) ® B*,O (see the introduction). Thus one has, by composition,a homo-

morphism of U) (Lie (G)) in B*,O mapping the connectionof U) (Lie (G)) on
En® A’~which we call the canonical homomorphism.Notice that the L

1 are
naturally defined on B*~Oand that the canonicalhomorphismintertwines the

action of the L~on U) (Lie (G)) and on B*,O. The canonicalhomomorphism
of U) (Lie (G)) in B*,O is of coursethe unique homomorphismof differential
algebras mapping the connection of U) (Lie (G)) on En® A’~.

LEMMA1. The canonical homomorphism of U) (Lie (G)) in B*,0 is surjective
and induces isomorphisms of vector spaces wT (Lie (G)) -~BT,O for any r ~ n

= dim (M).
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For the proof, let us notice that the suijectivity is obvious and that the

A~1...A~(F~l)m1...(F~)mbwith a+2~m~=r, a,<a
2<...<aa, ~<

<132<... <13,, and ak, (3~~ dim (G) form a basis of Wr(Lie(G)), where A0)
denotesthe connection of W(Lie (G)) and FU) denotesits curvature,we shall
show that the correspondingfunctionalsof C in &.2r(M) are linearily independent

(which implies the lemma). For that, is sufficient to produce,for any ak, ~

as above,an elementa of C suchthat at somex0 EM, onehasa~(x0) - . - a~(x0)
(~I(X0))m1 . . . ( b(~))’~b* 0 and all the other productsvanish at x0. To cons-

truct such a aE C, notice that given an arbitrary Lie (G)-valued1-form a0atx0
and an arbitrary Lie (G)-valued 2-form at x0, there exists a Lie (G)-valued

1-form a on M such that a(x0) = a0 and da(x0) + 4 [a(x0), a(x0)] = ~. Thus,

thereis a aE C such that aaj(xo) = dx
1 aa~2(xo)= dx°and the othercom-

ponentsof a(x
0) vanish,

1 kr~a+m1~i(x) = dx~’AdX~~~m1m1! k=a+1
I ka+~2m~+mb

dXkAdXI~+mb
m,,. b—i

k=a-1- ~ 2m1+i
1=1

and the other componentsof 6(x0) vanish; (x~c)denotesa coordinatessystem

aroundx0. Clearlysucha a E C satisfiesthe aboveconditions. U

It follows immediately from lemma 1 that the canonicalhomomorphismof
W (Lie (G)) in B*~O(Mx G), which is surjectiveby construction,also inducesiso-
morphisms U) ~(Lie (G)) -÷B”°(M x G) for r < dim (M). Since all this comes
from local considerations(in fact jets of finite orders) and since a principal
G-bundleis locally trivializable onehasthe following theorem.

THEOREM7. Let P be a G-principal bundle over M. Then the canonical homo-
morphism of U) (Lie (G)) in B *.O(p) is surjective and inducesisomorphismof
vectorspacesU) r(Lie (G)) —* B’~’

0(P)for any r < dim (M).

Notice that, apartsurjectivity, nothing is said on what happensfor dim (M) <
<dim (F) = dim (M) + dim (G).
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2. B.R.S. ALGEBRAS AND THE WEIL-B.R.S. ALGEBRAOFALIEALGEBRA

2.1. Bigradedcommutativedifferentialalgebras

A bigraded algebra will be an associativealgebrad whichadmits the direct
sum decompositiond = ®dT,s and is such that the product satisfies

d r ~ C dr+ r’ 3 + s’ The elementsof d~ are calledhomogeneousfor the
bidegreeor bihomogeneousof bidegree(r, s). A linearmappingL of d in itself is

said to be bihomogeneousof bidegree (m, n)E ~2 if L(d’~3)C dr+m,s+n

for any (r, s)E N2 (we extend the bigraduationto ~ with the convention

= {0} if r or s is strictly negative).The elementsofdk = r+sk~W are

called homogeneousof total degree k. Thus a bigradedalgebrais, in particular,
a graded algebra for the graduationcorrespondingto the total degree,so the

various notions definedfor gradedalgebrasin 1.1 suchas gradedcommutativity

for instance,make sensefor bigradedalgebras.Notice also that d *,O = ~

anddO,* = ~ ,~0,i are gradedsubalgebrasof d. We shall denoteby ~ :

..÷ç~fr~sthe projectionof don d~’~correspondingto the direct sumdecompo-

sition d= e ~

Let d beabigradedalgebraand supposethat d is a differential on dconsi-
dered as graded algebra.Then we havedd’~3C e d~’ one intro-

r +S r+S+ 1

duces d”° and d°,’ by d”0 = r’~spr+ 1,30 d oF”3 and d0” = r~spr,s+ ‘0 doFF,s.

In general one has d ~ d”0 + d°”, (in fact d = - P’,3 0

{r,s,r ,s with r + s = r + s + i}
0 d oP’’3). In the case where d = d”°+ d0”, d equippedwith d is called a

bigraded differential algebra; d = d”°+ d°” implies that d”° and d°” are two
anticommutingdifferentials, (d”°)2= 0, (d°”)2= 0 and d”°d°”+ d0” d”0 = 0.

Conversely if the bigraded algebra d is equippedwith two anticommuting
differentials d”°and d°”which are bihomogeneousof respectiveb,degrees(1,0)
and(0,1), thend is a bigradedalgebrawith total differentiald = d”°+

An exampleof bigradedcommutativedifferential algebrais the algebra&2(M)

of complex differential forms on a complex manifold M; ~Z~~s(M)is then the
spaceof differential forms which are of degreer in the dz/c~sand of degrees in
the dV”S, (z~c)being a systemof local holomorphic coordinateson M. In this

cased is of coursethe exterior differential and the standardnotation is a and
a for d1’0 and d°”.Furthermoreif M is only an almostcomplex manifold, then
it is true that f2(M) is still a bigradedalgebrabut d = a + & is true if and only
if the almostcomplex structureis integrable[19]. So, amongthe almostcomplex

manifolds, the complex manifolds are distingushedby the fact that their spaces
of complex-valueddifferential formsare bigradeddifferentialalgebras.

In the following, we shall be interestedon bigraded commutativealgebras
cl. Notice that d ~ equippedwith d”°is thena gradedcommutativealgebra.
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In the examplesthat we have in mind, d *.O will be connectedto differential

forms and d”°will be connectedto theexteriordifferential; it is why we shall

changea bit the notation by writing d to denoted1’°and 6 to denoted°”,the
total differential being now d + 6. Thus, from now on, a bigradeddifferential

algebrawill be a bigradedalgebraequippedwith two anticommutingdifferentials
d and 6 such that dd’3 Cd’~ ~ and 6d’’5 C dT,3~.(In most examples
in the following the differential algebra(dO.*, 6) will be relatedwith a cochain

complexof a Lie algebra).

Let ~ bea Lie algebraandd beabigradedcommutativedifferentialalgebra(with

the abovenotation).Supposethat i is anoperationof g ond consideredasagraded
commutativedifferential algebra.We shall say that d is a bigradedg-operation
~ is bihomogeneousof bidegree(— 1, 0) andL~is bihomogeneousof bidegree
(0, 0) for XE.g. In this case,one has L

1=i1d+di1and i~
6+6i~=O,for

XE g. and (d*O, d) is stableby i~and is a g-operation;in fact, a sub-g-opera-
tion ofd. Notice that,although (d*.O d) and (dO*, 6) play a symmetricrole

in the bigradeddifferential algebrad, in the last definition a preferenceis given
to (d*.°,d).

2.2. B.R.S.algebrasandoperations

As explainedin the introduction,the relevant cohomologyfor the problemof
anomaloustermsin gaugetheory is the 6-cohomologymodulod of thebigraded

commutativealgebraB*.*. This algebra,as well as the algebra8*,* havespecial

propertiesand, as will be shown below,it is useful to formalize by introducing
thefollowing concept.

DEFINITION 3. Let g be a finite dimensionalLie algebra.A B.R.S.algebra over

g is a pair (d, ~) where d is a bigradedcommutativedifferential algebraand
w is an element of god1, (d1 = d’° o d°’1), such that we have

(*) (d+6)w + — [w,w]E
9od

2’°
2

where d, 6 and thebracketare definedon g ®d, as before,by dX oa = X o da,
6X®a=Xz6aand[Xoa, Yo13]=[X, Y]octIlforX, YEganda,/3Ed. U

Onehasw=A +x with AEgod”° and XE go~1°”,so the abovecondi-

tion (*) reads

1 1
(d+tS)(A+x)+—[A+x,A+x]=dA+-—[A,A]

2 2
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which is the condition (*) of the introduction so 8*,* and B*,* are B.R.S.
algebrasover Lie (G). By expanding the above equation in bidegreesoneobtains

(*l) 6A=—d~—[A,~]

(*2)
2

which is anotherform of(*).
When there is no ambiguity on w = A + x we simply speakof the B.R.S.

algebrad; w = A + x will be called the algebraic connection, or simply the
connection of d. In fact, for all the B.R.S. algebra (d, A + x) over g that
we have in mind, thereis a natural bigradedg-operation for which A + x is a

connection(in the senseof 1.3). A B.R.S.algebra(d, A + x) over 9 on which
thereis a bigraded9-operation for which A + x is a connectionwill be called

a B.R.S. g-operation. If d is a B.R.S. 9-operationwith connectionA + x~then
d*,O is stable by the i1, for XE g, and the graded commutativedifferential

algebra(d*.O, d) is a 9-operationwith connectionA.
Supposethat d is a B.R.S. 9-operationwith connectionA + x~then onehas

(from the definitions) for any YE g

i~(A)= Y, ~y(X)= 0
(4)

i~(dA) = [A, Y], i~(dx) = [x,Y]

andof coursei~
6+ 6i~=0.

It follows that we have,for YE 9

L~i,b=[i/i,YJ, for i/’=A, i/i=dA (orF), i/’~x

and i/i =dx and that ~ commutes with
d and 6. In theseformulae,i~andL~areagaindefinedongodbyi~(Xoo~)=
=Xoi~(cx)andL~(Xoa)=XoL~(a)forXEgandaEd.

In the caseof the algebraB** with A andx as in theintroduction,formulae
(4) define a bigraded Lie (G)-operationand B*,* becomesa B.R.S. Lie (G)-

-operation.
Let F be a principal bundle over M with structuregroup G, dim M = n E IN

and G is a finite dimensionalconnectedLie group.Thegaugegroup ofF AutM(F)
is the groupof automorphismsofF living M (pointwise)invariant; i.e.~E AutM(P)
if ~ (rg) = ~‘ (r)g and ir(~(r))= ir(r) for any rEF and g E G, ir being the projec-
tion iT :F—+M. Introducing g(r) such that ~(r) = rg(r), for ~E AutM(P), rEP,

one seesthat AutM(F) identifies with the groupof (smooth)mappingsg : F -~G
such that g(rg

0) = g~ g(r)g0 for any rEP, g0 E G. The Lie algebra aut,,1(1~
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identifies with the mapping ~ :P—+ Lie (G) such that ~(rg0) =g~~~(r)g0in
other words autM(P) identifies with the ~E Lie (G)o fZ°(F) such that =

= [~, Y] YE Lie (G), where ii,, L~are defined on ~l(P) and Lie (G)o ~�.(P)
as explained in 1 .3 and the bracketon Lie (G) ® ~2(F) is also as in 1.3. With

the same notations, the (affine) space C of connectionson P is the spaceof

all aELie(G)®f~(P)satisfying i~(a)=Y and L~a=[a, Y], for YELie(G).
Let B’’

5(P) be the spaceof differential operatorsof C x (autM(F))3in &2’(P) which
are polynomial in C and s-linearantisymmetricin (autM(P))5and let g*.*(p) =

= ® B’’3(P). By the sameformulaeas for ~*,* in the introduction,one defines

a product on ~*~*(p) for which ~**(F) is a bigradedcommutativealgebraand
two differentialsd and b for which it becomesa bigradedcommutativedifferen-

tial algebra;d is inducedby the exterior differential of -11(P) and b is inducedby
the Lie algebrastructureof autM(P) and the right action of autM(P) on C. On

we havealreadydefinedi~and L~for XE Lie (G), (seein 1.3); we extend

andL~to ~*.*(P) by writing (for XE Lie (G))

(ixw)(a; ~,‘ -‘-‘ ~x) = ix(w(a; ~,, . . - ,

and

(Lxw)(a; ~i, . . - , = L,~.(W(C; ~ ~

for wE ~**(F), aE C and ~, - . . , ~ E autM(P). One verifies that, with this
X ~ i~,Bl~*(P)is a bigraded Lie (G)-operation.Furthermore,by defining A E

E Lie(G)® B”0(p) by A(a) = aE Lie(G)® ~l’(F) for aE C and XE Lie (G)®

o ~°‘1(P) by X(~)= ~E Lie (G) ® f10(P) for ~ E autM(F), oneverifies that A + x
is a connectionon the bigradedLie (G)-operation~**(P) for which the condi-
tion (*) is verified. Thus B**(P) is a B.R.S. Lie (G)-operationand B*O(F)
is just the Lie (G)-operationwith connectionA definedat the endof 1.3.

Let B**(P) be the smallest bigraded differential subalgebra(with unit) of

~*.*(p) wich containsthe Lie (G)-componentsof A and x; i.e. if (E
0) is a basis

of Lie(G) and if A = E0®A° and x = En® X°, B**(P) is the subalgebraof
B*.*(P) generatedby the A°’sthe X°’~,the dA°’sand the dX°’s(the ~A°’s and

are then in B**(F) by (*)), B**(P) is a bi-gradeddifferentialsubalgebraof
~*~*(p) which is stableby the ix, for XE Lie (G) and,by construction,A + XE

E Lie (G) o B**(P). It follows that B**(F) is a B.R.S. Lie (G)-operation(in fact
a sub-operationof ~**(F)). Furthermore,B*(kP) is the Lie (G)-operationwith

connectionA whichwasalsointroducedat theendof 1 .3.
In 1.3 we constructeda 9-operation with connectionB*.O(d) for any g-

-operation d which admits connectionsand B*O(F) = B*O(cl(P)) was the
particular case where g = Lie (G) and d = fl(P). In order to show that the

constructionof B**(P) is really a naturaloneandin order to get some insight
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on what generalises the notion of gauge transformation for the case of a 9-

-operationd, we shall proceed to the construction of a B.R.S. 9-operation

B*~*(d) associatedto a 9-operation d which admits connections. B*~*(P)
will appearas the particular case where g = Lie (G) andd = ~2(P) of this cons-
truction, i.e. B*~*(F)=

First of all, let us say a few words on the structure of the gradedderivations of

a graded commutative algebra d. We denoteby D”(d) the spaceof graded
derivations of degreek E ~ of d; if k is eventheelementsof D”(d) are deriva-

tions and if k is odd the elementsof D~’(d)are antiderivations.As alreadyno-
ticed in 1.1 the ~-graded spaceD(d) = ~D”(d) is a k-graded Lie algebra

for the gradedcommutator[~, ~]definedby

[6, 6’](w) = 6(6’(w)) — (— l)~’6’(6(w))

for &ED
1’(d), 6’ED”(d) and wEd. On the other handD(d) is also a

graded d -module if we define a6 for a E d and 6 ED(d) by (a6)(w) =

= a6(w) for any wEd; one verifies easily,by usingthegradedcommutativity,

that if a E dm and 6 ED”(d) thencr6 EDtm+ ‘~(d).It is worth noticing here
that although D(d) is a graded Lie algebraand a gradedd-module,it is not
a graded Lie algebra over d sincethegradedcommutator[~,~]is not d-bilinear.
All this of course applies in the case of a ~-graded commutative algebra d =

= ® d”, but we shall be interestedonly in the case where d” = {0} for
k 0 ZZ

k< 0, i.e. is the case where d in N-graded. Notice also that a commutative

algebra A is a gradedcommutativealgebraif we define A0 = A and Ak = {0}

for k ‘� 0; then D( A) = D°(A) is the Lie alge6raof derivations of A . This
applies in particular to the algebraC~(M)of smooth functions on a manifold
M where D(C~(M))= D°(C”(M)) is the spaceof vector fields on M which is,
as well known, a Lie algebraand a C’~(M)-modulebut not a Lie algebraover
C~(M).

Let us now assume that d is a g-operation.When g= Lie (G) and d= ~7(P)
an automorphismof P is simply an automorphismof the Lie (G)-operation
12(F); the set of automorphismsof F, Aut (F) is a group, and the gauge group
AutM(P) of P identifies with the subgroupof the elementsof Aut (F) which

leave invariant each basic elementof 12(F). This generalizedimmediately to

(d, g). We call gauge transformation ofthe g-operation d any automorphism
of the 9-operation d which leavesinvariant each elementof ,~.~(d);these
gaugetransformationsform a groupdenotedby Aut~(d),(thusAutM(P) identi-
fies with Aut~(12(F))).At the infinitesimal level, we denoteby aut~(d),the
Lie algebraof derivations0 of degreezeroof d whichcommutewith the i

1( XE

E g), O~.= ixO, and are such that 013 = 0 for any 13 E ~(d) (i.e. for anyi3 E d
such that i~13= 0 and L~13= 0 for any YE g). In the case g = Lie (G) and
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d= 12(P), aut~(d)= autM(F) identifies with the Lie subalgebraof Lie (G)o

o12°(F) which consists of ~E Lie (G)o 12°(P)satisfying ~ = [~, Y], VYE

E Lie (G). In the general case(d, g), let us denoteby aut~(d) the Lie sub-
algebra of g ® d° of the ~E g ®d°satisfying ~ = [~,Y], VYE 9; we shall

define a Lie algebra homomorphismL : aut~(d)-+ aut~(d). Let (E) be an
arbitrarybasis of g, ~= ~oE0 be an elementof aut~~(d)anddefine L~(w)=
= d(~iE(w)) + ~°iE(dw) for wEd; then LE(iy(w)) = i~L1(w) is easily

verified and, since L1(w)= ~LE(w) + (d~)iE(w),it follows that L1(w) = 0

wheneverw is basic.On the otherhandit follows from the aboveconsiderations
that L1 is in D°(d) and that L definesin fact a Lie algebrahomomorphism

L : aut~)(d)—~aut~~(d).
Let d be a 9-operationwhich admitsconnectionsand let C denote theaffine

spaceof connectionson d. Consider the space P’~(d) of mapping of C x

x (aut~(d))~in d
T which are polynomial in C and s-linear antisymmetric

in aut~(d).One defines on e P’’(d) = P(d) a productfor which it becomes

a bigradedcommutativealgebra and differential d and 6 for which P(d) is a
bigradedcommutativedifferential algebraby the sameformulaeas in the intro-

duction,namely

(w - w’)(a; ~ ~ ~‘) =

(— l)’~
= (— l)~w(a; ~i~(1)’’~’ E(

3))w ‘(a; ~n(s+ 1) ~r(s+ ~))
(s +s ). ~

for w E P”
3(d), w’ E P’’3(d), aE C and E aut~°~(d), (dw) (a; ~,, . .

= d(w(a; ~ ~))and

(6w)(a; ~ ~) = (~ ~y-- k
0(~k)w(a;~0 ~ +

0~k~s

+ ~ (_Iy-~-l-~mw(a.[~,~ ~0 ‘ -

O01’~m ~s

for wE P’~
3(d)aE C and E aut~(d); where 0(e) is induced, for ~E

E aut~(d), by the right action on C a ~ L~a=d~+ [a, ~]. IntroducingA E

E g o P1’°(d) and XE g o P°”(d) by A(a) = aE g od1 and x(~)= ~ E
E g ® d° for aE C and ~E aut~(d), one readily verifies that P(d) is a B.R.S.
algebra over g with connectionA + X and that furthermore,if we define on
P(d) for XE g by (ixw)(a; ~ , ~) = i~(w(a;~~ ~)), (wE P’’3(.cd),

aE C and E aut~(d)),P(d) becomesa B.R.S.g-operation.Onethendefines
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B*~*(d) to be the smallestbigradeddifferential subalgebra(with unit) of P(d)
which containsthe components(in g) of A andx; B*~*(d) is again a B.R.S.
g -operation and, in the above case g = Lie (G) and d = 12(F) it reducesto

B*.*(P). 8*O(d) is of course the 9-operationwith connectionA introduced
in 1.3.

2.3. The Weil - B.R.S. algebraof a Lie algebra

Given a finite dimensionalLie algebraq, there is a natural notion of homomor-

phism of B.R.S. algebraoverg, namelyit is a homomorphismof thecorrespond-
ing bigradeddifferential algebrasmappingthe connectionon the connection;in

the sameway thereis a naturalnotion of homomorphismof B.R.S.9-operation,
namely it is homomorphismof the underlying B.R.S. algebraswhich is also a

homomorphismof g-operations.It turns out that in the categoryof.B.R.S.-

-algebrasthereis a universalinitial object which we call theWeil - B.R.S. algebra
of g and which we denoteby A (9). Furthermorethereis a natural 9-operation
on A(g) for which A(g) is a B.R.S. 9-operationand it turns out that, as B.R.S.

9-operation, A (g) is also a universal initial object in the category of B.R.S.

9-operations.We now describeA (g).
As gradedalgebra,A (g) is describedby

A(g) = Ag*o Sg*o Ag*o ~g*,

where 9* is the dual spaceof g, ® is the tensorproductof gradedalgebraand

S g* is, as before, considered as a graded commutativealgebraby giving the
degree 2k to the elementsof 51Cg* (

5k9* = (5~*)2k)~Let (En) be a basis of
g with dual basis (E°)and define ~n, p’n Xn and ~ in A(9) by A” = En® lo

A (g) is just the free connectedgraded commutativealgebrageneratedby the
Ants and the X”’S in degreeone and by the F~’sand the ~I”’S in degreetwo.

IntroducingA,F, X and i,/i in g®A(g) byA =E0OA”,F=E,,o Fn,X=EnO X”

and 1i =En® ~‘°, we define dA”, dFn, dr”, d~L”’, 6A”, 6Fn,
6X” and 6I,II” in

A(g) by dA=—4 [A,A}+F, dF=—[A,F], ~ d~J’=0 and 6A=
= — — [A, X], ~F= [F, X], 6X = — 4 [X, Xl, 6th = [t,li, xl, where dA =

öi~i= E ®~.i,pn d and 6 extend uniquely as two antiderivationsof

A (g) and oneverifies that d and 6 so definedare two anticommutingdifferential,
i.e. they are of degreeone andsatisfy d2 = 0, 62 = 0 andd6 + 6d = 0. Onethen
introducesan underlyingbigraduationon A (g), for which it is a bigradedcommu-
tative algebra,by giving to the Antsthe bidegree(1,0), to the F°”s thebidegree

(2, 0), to the X”’~the bidegree(0, 1) and to the th’”’s the bidegree(1, 1). Then
d and 6 are homogeneousfor the bidegreeof respectivebidegrees(1, 0) and

(0, 1), so A (g) is a bigradedcommutativedifferential algebra.It follows from
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thedefinition thatwe have

1
F=dA+— [A,A]=(d+6)(A+~)+— [A+~,A+~],

2 2

thus, A (g) is a B.R.S. algebra over g with connection A + x. Let us definei~

for XE gto be the uniqueantiderivationof A(g) satisfyingi1(A) = X, i1(F) =

= 0 = i~(x)and i1(th’) = [x,X] with, as usual here,

ix(A) = E® ix(A”) i~Ohi)= E®

and the standardbracket on 9 o A (g). Equipped with X f-i’ i1, A (g) becomes
a B.R.S.9-operation,as easilyverified, andwe shallreferto it as the Weil -B.R.S.

algebra of the Lie algebra g. One hasthe following theorem.

THEOREM 8. (Universal property of A (g)). For any B.R.S. algebra d over

g, there is a uniquehomomorphismofB.R.S.algebrasoverg, 6 : A (g) -* d, of

A (g) in d. If furthermore, d is a B.R.S.g -operation, then ~ is an homomor-
phismofB.R.S.g -operations.

The proof of this theoremis completelysimilar to the proofof theorem2 and
just use the universal propertiesof exterior algebras,symmetric algebrasand

tensorproducts.

Notice that A*~O(g) = e AT.O(g) is isomorphic to the Weil algebra;in fact

A*~O(g)= W(9) o 1 o 1. More generally, if we retain only the total degree,it
follows from (d + t&)(A + tX) + ÷[A + r,~,A + tx] = F, with t E IR, that the

subalgebraU),(g) of A (g) generatedby the A” + tx”s and the F”s is stable
by d, = d + to andby the i1 (XE g) and that it is isomorphicto the Weil algebra
with differential d, and connectionA, = A + tx. Thus A (g) is a sort of .cO-

-dressing>>of U)(g); in the sameway, a B.R.S. 9-operationdappearsasa <<6-
-dressing>> of the g -operation cl *.0 although .W is itself a g -operation of a
particulartype.

We shall need later on the d-cohomology,the (d + 6)-cohomologyand the
6-cohomologyof A (g) which wenow describe.

Let us denoteby
9’A(g) the subalgebraof invariant elementsof A (g), (i.e.

= ~(A (g))) with the notationsof 1.3). Then .94(g) is stableby d and
by 0 sinceL~commuteswith d and 0 for anyX E g.

THEOREM 9. The d-cohomologies and the (d + 6)-cohomologiesof A (g) and
of thesubalgebra ~9’A(g)are trivial.
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I.e. they all reduceto thegroundfield K (in degreezero).Theproofis exactly

the sameas the one of theorem5. In fact, onenoticesthat for any t EIR, A~,
(d + t6)A” x” and (d + tO) X” is a free systemof homogeneousgenerators
of A (g) and that the unique antiderivation k, satisfyingk,Aa = k,Xa = 0 and
k,(d + tO)Aa = A”, k,(d + tO)x”= x” commutes with the L1 and satisfies
k,(d+t6)+(d+tO)k,= <(degree in the geflerato~{An,~Q,(~~t6)AU, (d+

+ t6)x”}x’ so it gives a contractinghomotopyin positive degreesfor both A (g)
and ~‘A~9~•So the (d + t6)-cohomologiesof both 4(g) and ~4(g) are trivial

foranytEiR. .

THEOREM 10. The 6-cohomology of A (g) coincides with the 6-cohomology

of the subalgebra (with unit) generated by the x”. F”; this differential suba ige bra
of A (g) for 6 identifies with the complex C*(g, Sg*) of cochainson g with

values in Sg * So one has H
21’ + 1.5(4 (g), 6) = 0 and H2~”~(A(g), 6) = Jf3(g,

Skg*)for any k,sEN.

For the proof of this theorem,one noticesthat the A”, 6A°,X(i and F” form

a free systemof bihomogeneousgeneratorsof A (g) and that the subalgebra
generatedby the x” and the F” is stableby 6 and identifieswith C*(g,Sg*) =

= Ag*o Sg~and that 6 is just the differential of C*(g, 5g*), (seein 1.2dand
in the <<warning)> of 1.4). Thus (A (g), 0) is the tensorproductof the contracti-

ble algebra ® ~‘(A”, 6A”) with C*(g,Sg*), i.e. (A(g), 6) = (® ‘I(A”, 6Aa))®

®C*(g, Sg*), so H(A (g), 6) = H*(g, Sg*). The rest follows by the correct
identification of the bidegree.

The main reasonhere why we introducedA (g) is the following extensionof
LemmaI for theB.R.S.algebra8*,*.

LEMMA 2. The canonical homomorphism£B*,* : A(Lie(G))-i’ B*~* of B.R.S.

algebras over Lie (G) is sur/ective and induces isomorphisms of vector spaces

A’’3(Lie (G)) -i’ B’’3 for any(r, s) with r ~ dim (M).

The proof is similar to the proof of lemma 1 and, in fact, lemma 1 is the
<<hard part>>of this theorem. U

One has (by definition) a surjective homomorphism B*.*(M x G)—i’ B*.*

of B.R.S. algebrasover Lie (G), obtainedby restriction to the canonicalsection
M x 11. of the trivial G-principal bundleM x G. As explainedin 2.2, 5*.*(M x G)
is not only a B.R.S. algebrabut also a B.R.S. Lie (G)-operation.Now although
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the i~,for XE Lie (G), are not well definedon B**, the Lx are perfectlydefined
on B*,* and the homomorphismB*.*(M x G)-+ B*,* permuteswith the actions

of the Lx on B *~*(Mx G) andon B ~ for XE Lie (G). It follows thenfrom the
last lemma that 6 B permuteswith the actionsof the L1 on A (Lie (G)) and

B*,* since it has to factorize through
6B*,*(M G) in view of the universalpro-

perty of A (g), (in fact one could as well define L
1 on B” by this propertyof

In particularthe invariantelementsof A (Lie (G)) are mappedby
on the invariantelementsof B**.

It follows from the last lemma that the 6-cohomologymodulo d of B*,* is
completelyknown from the one of A (Lie (G)). It is why the rest of this paper
is completely devotedto the computationof the 6-cohomologymodulo d of

A (g) and we shall end with a completedescription of this cohomologyin the
casewhereg is a reductiveLie algebra.

Again, by. the sameargumentas the one leading from lemma 1 to theorem7,

one hasthe following extensionof theorem7.

THEOREM 11. Let P be a G-principal bundle overM. Then the canonical homo-
morphism of A (Lie (G)) in B *.*(p) (of B.R.S. Lie (G)-operations)is surjective

and inducesisomorphismsof vectorspacesA ‘‘
3(Lie (G)) —i’ B’’3(F) for any (r, s)

with r ~ dim (M).

3. THE 0-COHOMOLOGY MODULO d OF THE WEIL-B.R.S. ALGEBRA

3.1. Complementson differential vector spaces

All the vector spacesconsideredhere are vectorspaceswith the sameground

field K which is either JR or C. We denoteby 0 the (0-dimensional)vector
spacewhich is reducedto its zero element;this vectorspacehasthe properties

that, given an arbitrary vector V thereis a unique linear mapping 0 -÷ V of 0
in V, (namely0 -÷0 E V), and a unique linear mapping V—i’ 0, (namelyx -i’ 0,
Vx E V). In categorial languagethe first property meansthat 0 is an initial
object in the categoryof vectorspaces(overK) and the secondpropertymeans
that 0 is a final objectin the categoryof vectorspaces.

f,~-i f~ f~±
1

A sequence . . —i’ ~ -~ . . . of vector spaces and linear
mappingsis said to be exactat V~if Im (j~_~)= Ker (f~),i.e.f~_,( V,~,) = j~ ~(0);
it is said to bean exactsequenceif it is exacteverywhere,(for anyn). For instan-

ce, the sequence0—i’ F-
1i’ G is exactif and only if i is injective (i~(0)= 0), the

G4H-~0 is exact if and only if p is sudective(p(G) = H), so
0L v-~w-~0

is exact if and only if f is an isomorphism.A shorth exactsequenceof vector

spacesin an exact sequenceof the form 0 -+ F -~i’ G -~H -÷0; exactnessat F
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meansthat i is injective soF is isomorphic to the subspace1(F) of G, exactness

at H meansthat p is surjectiveso H is isomorphic to G/p’(O) i.e. to G/i(F)

by exactnessat G.
A differential vector space,or a differentialspace,is a vector space Vequipped

with an endomorphism d such that d2 = 0; d is called the differential of V.
Given a differential space V, one definesthe subspacesB(V) = Im (d) = d(V)

and Z(V) = Ker(d) = {x E Vj dx = 0); one has, from d2 = 0, B(V) C Z(V)

and the vector spaceH(V) = Z(V)/B(V) is the homology of the differential
vector spaceV. If V’is anotherdifferential spacewith differential d’, an homo-
morphism of differential spacesof V in V’is a linear mapping f: V-i’ V’ such

thatfo d = d’ of. It follows from this definition that if f: V-i’ V’ is an homomor-

phism of differential space, one has f(B(V)) C B(V’) and f(Z(V)) C Z(V’) so

f induces a linear mapping f~<: H( V) —i’ H( V’) in homology. If f’ : V’ -i’

is anotherhomomorphismof differential spaces,thenf’ of: V—i’ V” is of course

againanhomomorphismof differentialspacesand,onehasin homology

(f’of)~f’#of# :H(V)-+H(V”).

One has an obvious notion of exact sequenceof differential spaces;this is

just a sequenceof homomorphismof differentialspaces which is exact as sequen-

ce of linear mappingsof vector spaces.Given an exact sequenceof differential

spaces,the correspondingsequenceof linear mappingin homology is generally

not exact. For instance if 0—i’ E 4’ F~E’~G —i’ 0 is a shortexactsequenceof differen-
#

tial spaces,one verifies easily that the sequenceH(E) -+ H(F) ‘~-i’ H(G) is exact

(at H(F)), howeveri~is generally not injective and p# is generally not surjective
i# #

so the sequence 0 —i’ H(E) —i’ H(F) “-~ H(G) —i’ 0 is generally not exact (except

at H(F)). Onehasthe following classicalresult:

PROPOSITION1. Given a short exact sequenceof differential vector spaces 0 -÷

—i’ E4’ F-~G —i’ 0, there is a linear mapping a : H(G) -+ H(E) for which the

triangle

H(G) -t H(E)

i#

H(F)

in exact. Furthermore a has the following (functorial) property.-Givenanother

short exactsequenceofdifferentialspaces0 -i’ E’ ~ F’ £‘~G’ —i’ 0 and homomor-
phism of differential spaces e :E—i’E’, f:F—i’F’, g :G—i’G’ such that i’oe=

=foiandp’of=gop,onehase#oa=aog~<.
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Let us remind the definition of a. Let h E H(G) and let x E Z(G) be in the
class h. By surjectivity of p (exactnessat G) thereis a y E F such that p(y) =

= x p(dy) = dx = 0 so (exactnessat F) there is a Z EE such that i(z) = dy.

One has i(dz) = d
2y = 0 which implies by injectivity of i (exactnessat E that

z E Z(E). One verifies that the class of z in H(E) only dependson h E H(G)
and that, if one denotesif by ah, the correspondingmapping a : H(G) -+ H(E)

satisfies the statementof proposition 1. a is called the connecting homomor-

phism. U

An exact couple of vectorspacesis an exacttriangle of linear mappinga, b, c

F b

a~/

E

involving two vector spacesE and F. In view of proposition 1, thereis an easy
way to produceexact couples,namelythe exacttrianglesin homologyassociated
with short exactsequencesof differential spacesin which two of thethreediffe-

rentialspacesinvolved coincide.
Given anexactcoupleas above,oneconstructsanotherone

F’ b’
a’N / c’

E’

calledthe derivedexact coupleby the following procedure.One takesF’ = b(F)
and b’ = b ~ b(F) :F’—i’F’. From exactnessat E, if follows that d = c oa is a
differential on E (i.e. d2 = 0) and one definesE’to be the homology of the

differential space (E, d) : E’ = H(E, d). From exactnessat F (the appropriate
one) if follows that a maps Z(E, d) into b(F) = F’ and B(E, d) on 0 E F; a’ is
the inducedmappingof E’ = Z(E, d)/B(E, d) in F’ = b(F). Again by exactness,
c maps F into Z(E, d) and the classof c(f) in E’ = H(E, d) doesonly depend

on b(f) E F’, for fE F; c’is the correspondingmappingof F’ in E’, oneverifies
that thetriangleof linearmappingsa’, b’, c’ so definedis again exact.

By induction,one defines,for any integerr E IN, the r” derivedexactcouple
br

—F

ar ~ Cr

byE
0=E, F0=F,a0=a, b0=b, c0=c and Er+i=E,~~1~+l=1~’,ar+l=a,

br+ = ~ Cr+ = c,~.Setting dr = Cr o a,., (Er~dr) is a differential spaceand
Er+ 1 is its homology, Er+ 1 = H(E,., dr); (Er~dr)re~ is the spectral sequence
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associatedto the exactcouple.Quite generally a sequenceof differential spaces

(J~)suchthat ~+ = H(V~)is calleda spectralsequence.
Finally, if V is a differential spacewhich is p-graded, V = 0 V’~and if

n E ZZ

d is homogeneousof degreeminusone,i.e. d V~C ~ we call it a chain com-
plex, the elementsof Z”(V) = Z(V) n V” will be calledn-cyclesand theoneof
B”(V) = B(V) n V” will be called n-boundaries;in this caseH(V) is a graded

vector space, with H”(V) = Zh?(V)/B~z(V)and the connectinghomomorphism

correspondingto a short exactsequenceof chain complexesis alsohomogeneous
of degreeminus one. In the casewhered is of degreeone V = ® V~ is calleda

cochain complex,the elementsof V” are calledn -cochains,the onesof Z”( V)
are called n-cocyclesand the ones of B”(V) are called n-coboundaries;in this
caseH( V) is called the cohomologyof V, it is againa gradedvectorspaceand
the connectinghomomorphismassociatedto a short exactsequenceof cochain
complexesis homogeneousof degree one. A graded differential algebrais of

coursea cochain complexwith thesedefinitions. Notice also that if the differen-
tial space V is bigradedand if its differential is bi-homogeneous,thenH( V) is
a bigradedvectorspaceand that the connectinghomomorphismof a short exact
sequenceof suchbigradeddifferential spaceswith differentials of fixed bidegree
(r, s) is bihomogeneousof thesamebidegree(r, s).

3.2. The exact couple relating the 0 -cohomologymodulo d and the 0 -cohomo-
logy of theWeil - B.R.S. algebra

In this paragraph,9 is a fixed finite dimensionalLie algebraand the 0-coho-
mology H**(A (g), 0) of the Weil - B.R.S.algebraofg will be denotedsimply by
H(0). Thus, in view of theorem10, H2”~(0)= H3(g, SIC9*) andH21’~“~(o)= 0.

dA (g) is stableby 0 and therefore0 inducesa differential,again denotedby
0, on A(g)/dA(g) and the homologyof(A(g)/dA(g), 0) is just the 0-cohomo-

logy modulo d that we want to compute;we denoteit by H(0, mod(d)). Since
dA (g) is a bigradedsubspaceof A (g) andsince 0 is bihomogeneous(of bidegree
(0, 1)), H(0, mod(d)) is a bigraded vector space;H(0, mod(d)) = ®

mod(d)) (with HT’3 (0, mod(d)) = 0 wheneverr or s is strictly negative).
By definition one has a short exact sequenceof 0-differential spaces0—i’

—i’ dA (g)4. A (g) -~‘ A (g)/dA (g) —i’ 0 from which one obtain exact sequences

- . . ~H1”(dA(g), 0)~Hk.1(0)~

mod(d)) H1”~1(dA(g), 0)~... .

On the other hand the linear mappingsof Ak~l(g)in A1’~1~1(g)defined by
~i’ (— 1 )“ d QICJ induceds,for k + I ~ 1, isomorphismsof A “(g)fdA” “(g)

on dA1”(g) = (dA (~))k+~ in view of therorem9. Theseisomorphismspermute
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with 0, so onehas,with theappropriateidentifications,

Hk.l(6,mod(d))=H~~.l(dA(g),6)for k+l~l, (k,IEIN).

So, by ckeckingcarefully what happensin small degrees,one obtains,(with the

obviousidentificationsof i~ and~), the exactsequencesfor r ~ 1

Hr.s(0) ~ Hr.s(6, mod(d)) -t HT ~ ‘(0 mod(d))

starting by 0 —* H”°(O)~ H”°(O,mod(d)) 4... for r = 1, and by 0—i’ H~”°

(0, mod(d))~ HrO(0) ~ for r ~ 2. For r = 0 one has H0’ (0,mod(d))
H°’~ (0) for any sE IN, (inducedby p4<). Finally, by taking into accountthe

structureof H(6) givenby theorem10, oneobtainsthefollowing result.

THEOREM 12. (a) One has thefollowingisomorphisms:
H°’~(6,mod(d)) H3(g), Vs EN, (inducedbyp#);
H2”~“°(O,mod(d)) H°(g,Sk+ lg*) = ,9+ ~(g) and

H2~2’0(6,mod(d))= 0, VkE IN, (inducedby i~<);
H21’ + l~S(0mod(d))~H21”~~ 1(0,mod(d)), Vk E N and VsEN,

(inducedby ~).

(b) For any k E N, onehasthelongexactsequence

U ~ 1.1(6 mod(d)) L~H’(g, Sk+ 1~*) ~ H21’~2~1(0mod (d))

H2~ 1.2(6 mod(d))!~i’...~H~(g,S~ l~*)

‘~-~H2’~2~s(0mod(d))4 H21’~1.S+ ‘(0, mod(d)) H~‘(g
5k+l ~*)

From the last isomorphismsof theorem 1 2-(a), it is clear that, in the exact

sequenceof theorem l2-(b), one may replacethe H

2~ 1,s+ 1(0 mod (d)) by

the ~2j~,3+ 2(0 mod (d)) for sEN, one then obtains for any kE IN the exact

sequence

0 — H~’2(O,mod(d)) ~ H’(g, S1’ + 1~*)~ H2~2.1(0 mod(d))

~H2k3(0, mod(d)) ~ j#o)~l H3(g, S1’~ lg*)

~ H2k+ 2.s(8 mod(d)) ÷H21’~~2(6 mod(d))
io~Hs+1(gSk+1g*)P~ -..

Thus, by introducing the ~2-graded spacesH~,*(0mod(d)) and H~(9, Sg*)

defined by (H~,*(0,mod(d)))r~s= H2Ts(0,mod(d)) and (H~ (g, Sg*))rs =

=Hs(g,Srg*) for r~’0, s~0and r+s~’1 and by (H~*(0 mod(d)))rs=

= (H~(g, Su*)y.s = 0 otherwise,oneobtainstheexactcouplee~
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mod(d)) _~_i’H~,*(6mod(d))

p0 / ~0

H~(g,Sg*)

where i0 and p0 denote the canonicalmappingsinduced on thesesspacesby

~ a—’ andp~.
In view of the last isomorphismof theorem1 2-(a),H(0, mod(d)) is comple-

tely known if we know H~,*(6,mod(d)). The principle that we shall follow
to compute He~~,*(6mod(d)) will be to computethe spectralsequence(E,.),.E IN

associatedto the exact couplee~,(E0 = H~(g, S g*)), so the r~hderivedexact

couple�,. reads

~
2~H~~’t(6,mod(d)) -~--i’ a2TH~.~~,*(6,mod(d))

Pr ~ ETV7

andwe have(by exactness)isomorphisms

a2rH~,*(0,mod(d))~ p,.(E,.) o a2~2H~~,*(6,mod(d)),

i.e. isomorphisms

mod(d)) ~ p,.(E~)® a21’~2H~,*(6mod(d))

andthereforean isomorphism

H~,*(6,mod(d)) ep~(E,,)

sinceeachelementof H~~,*(&mod(d)) hasa finite bidegreeandsincea2decrea-
ses the secondby 2. Thus knowing Er’s andthe kernelsof the~r’ one hasH(6,
mod(d)) up to an isomorphism; in fact it is sufficient to know the spectral

sequence(Er~d,.),.E~.We shall computeall that in the case of a reductiveLie

algebrain the next paragraph.
We now want to give anotherusefuldescriptionof theaboveoperatora which

connectsit with the <<descendingchain>>equations[5].

LEMMA 3. (a) Let QT~E At’3(9) be such that thereis a Qr~l~S+ E At~,1+1(g)

such that 6Qt’3 + dQ~”~~’=0. Then there is a ~ such

that 0Q”~’3~1 + dQ~2’~~2=0.

(b) Let QT~3E At’3(9) be such that there are L~~1E A~”’(g) and L~”~E
E

4T_1,S(g) with Qt~3= 0LT,3~+ dLT~,3.Then Q
T’5 satisfiesthe assumptionof
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(a) and anj’ ~ 1 as in (a) is of the form QT_l.S+ 1 = 8LT~,s+ dL~
2-’~1

for someL~—2-~~1 E A~2’~1(e)

Proofof(a). Apply 6 to OQYs + dQT~~1 = ~ one obtains 6dQ’~”~~=

= d(—
5Q~_lS+ 1) = 0 so 0Qr—lS+ 1 + dQT

25+ 2 = 0 for some Qr_2~S+2E

~ A~—2.~~ in view of theorem9 for d.

Proofof(b). One has _OQTs = d0L~l,s so any QT~’~such that 0QT’~+

+ dQr_l~ 1 = ~ satisfiesd(Q~’~ 1 — 6Lt~~s)= U. So, again by theorem9,
Qt_l~S+ 1 = 8LT_~~s+ dL~2,s_i.

The assumption(a) on meansthat QT.S definesa 6-cocyclemodulod and

the statementof (a) is then that any QT.S< 1for which OQT” + dQT_l.s+ 1 =

again definesa 0-cocycle modulo d. (b) meansthat if Q”~definesa 6-coboun-
dary modulo d then Qr_l~s+1 also defines a coboundarymodulo d. It follows

that the class of QT~S+ in ~ 1(0 mod(d)) is well defined and only

dependson the class of QTS in Hr~~(8,mod(d)). We claim that the correspond-
ing linear mapping in H(6, mod(d)) is just the above a : HYs (6, mod (d)) —i’

-÷ H~_l,sf 1(0 mod (d)). A way to see it is to go back to the definition of the

connectinghomomorphism(see after proposition 1). Another way consistsin

checking directly the exactness of Hrs(O) Hrs(8, mod(d)) ~HT_ 1,s+ ‘(6

mod(d)) ~ HT’~ 1(0) where p~ is induced by the canonical projection

4rs(9) ATs(g)/dAT~s(g) (a 6-cocycleQ”8 is canonicallya 5-cocyclemodulo
d). and where i~ is induced by (— 1 )~ ‘d : A’~1~S(g)~ Ars(g) consideredas a
mappingof AT l.s(g)/dAr~~2s(g)in Ars(g). .

LEMMA 4. Let PE .~T+ 1(g) be an homogeneousinvariant polynomialofdegree
k + 1 on g - Then,P(F) = Ii ® P® ~ ® ii is an elementof A21’~2~O(g)satisfying

dP(F) = OP(F) = 0 and there are Q2k+ ~ ~~A(9)2”~~ for 0 ~p (

~2k+ I such that P(F~dQ21’t’°,0Q2 lpp+dQ2kPP+l=0 0~p-~2k

and OQ°’2~1 = ~ Furthermoreone has Q02~ = p(P)(~)= I® it® p(P) ® it
wherep is the Cartan map p : ~?T~ ~ g-.2k+ ‘(g) (seein 1.4).

Firstly dP(F) = OP(F) = 0 is obvious from the definitions and, furthermore.
one has i~P(F)= 0 and therefore LXP(F) = 0 for any XEg. Thus P(F) is in

fact in ~rA(g)and satisfies(ci ~-8)P(F) = 0, so by theorem9, P(F) = (d + 0)Q

with Q E ~9A(9~ of total degree 2k + 1. Expanding Q in bidegree, Q =

= ~ Q2k+ 1—p,p the Q2k+ ~ satisfy the assumptionsof the lemma. For the
p

last point, one notices that an element of A°”(g) is necessarilyof the form

w(x) = ii ® I ® w ® ii with w E A’1 9* and that w(x) is invariant iff. w is inva-

riant, i.e. WE .9~(g);then the result just follows from the definition of the



- THE WElL - B.R.S.ALGEBRA OF A LIE ALGEBRA, ETC. 561

Cartan map. .

The Q2k+ ~ of the last lemma are canonically 6-cocyclesmodulo d and

one has,by the definitionof a, a[Q21’~1P.P] = [Q2kP~P+ lj for thecorrespond-

ing elements of H(6, mod (d)). Now if Q’ E 4(g) is suchthat F(F) = (d + 6)Q’
then Q’ —Q = (d + 6)L so [Q’2~i~P4~]= [Q2k+ lP.P] and therefore P i-i’

.+ [Q2k + 1P. ~‘]is a well definedlinear mapping
1k,~ + 1: 5~+ l(~) -÷H

2k + 1 p,p

(6,mod(d)) for k E N and 0 ~ p ~ 2k + 1. One has j1’~P+ 1 = a
01k, ~‘, which

makes contact between the operator a and the <<descendingchain>>. As far as
one is only interested in anomalies in even dimension 2k, i.e. on H

21”’ (8,
mod(d)), one notices that/’~’1: ,9~‘(q) -‘i’ H21”(8, mod(d)) is an isomorphism

since H2”~1.1(0)= H2~~1~0(6)= 0; thus all H21”(6, mod(d)) is obtainedby

the constructiondescribedin [51.

3.3. The caseof a reductiveLie algebra

In the following g will be a finite dimensionalreductiveLie algebraandP =

= k p2k+ will denote the spaceof primitive forms on g, p2~’+ 1 being the
space of primitive forms of degree 2k + 1, (see in 1.2-c). We chooseoncefor
all a transgressionr : P—i’ ,9~(g)so 9~(g)= Sr(P) and H*(g, Sg”’) = Sr(P) ®

o AP (see in 1 .4) is a gradedcommutativealgebraif one definesthe degreeby

1 o ATF2~~+ 1 c (Sr(P)o AP)~’~2~’+ ~ andS~r(P21’+ 1) ® I C (Sr(P) o AF)~’21’+ 2)

One hasdim (P) = ~ dim (P2~’+ ‘) = rank (g) therefore there is an integer r~(~),

such that dim (p2TM~+ 1) ~ 1 and dim (p2k~‘) = 0 for k) r~(g) ~ =

= k=rM(~)
2~

Let us introduce the subspace~ = k r p2k+1 of P(= F0) and define the

subalgebras~ and E~= ~91~ of ,~?T5(g)® ,fJ1~(g),(rEIN), by 5, = (Sr(1~))®
®(AP) andE = 0 (5mr(P )) ® (A”P) ( ..9~). Wehave:

T m+n~l

= E~+1 0(m ~ (SmT(p2r+1)) o(AhlP
2T~)) ® ~ ~ oE~

(i.e. E~ involvesat leastone primitive elementof degree2r + 1). The identifica-

tion H*(g,Sg*)= ~ o~(g)= ~ leads to H~(g,Sg*)—E
0further-

more we haveE~= U for r> ,~(g).Let d~be the uniqueantiderivationof 5~
such that d,.(1 ~ ~ = 0, d,.(r(P,.) 0 1) = 0 and d,.(1o = r(a) ® I for
a E P

2t+ 1, Thenwe haved,~= 0, dr(Er) CE,. so the homologyH(E,., ci,.) is well

defined.

LEMMA 5. We have E~+ = H(ET,d,.) for rE N, i.e. the sequence (E,., dr)rE~
is a spectralsequence.
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Proof We have dr(Er+i)=0 and d,.(E~)cE~so all what we have to prove

is that the homologyH(E~,d,.) vanishes.Define d,~to be the unique antideriva-
tion of such that d(IoP,)=0, d(r(I~,~1)®1)=Uand d(r(a)ol)=
= I o a for aE P

2t+ 1• Thend,~(E,”)C E~’and thederivationd,.d + d,~d,.coincides
~ (

5m~(p2r+1)) ® (AnP
2T+ ‘)® ~+ with the multiplication by the number

n + m so, sinceET = ( o (SmT(p2r+1)) 0 (A”P2~~1)) ® ,9’ ~,any ci -closed
n+m~l r r

elementofE~is dr-exact,which achievesthe proof. U

We shall show that (Er, dr)rE~is the spectralsequenceassociatedto theexact

couplee~,and it is why we use this notation; for that, we needthe following
lemma.

LEMMA 6. (Generalised <(transgression>>lemma). Let XEE,., then, there are

QkE A(g) for k = 1,2 2r + 2 such that we have: dX + 0Q
1 = 0, dQk +

+ 0Q1’~1 = U, for I ~ k ~ 2r, and dQ2,.~1 + 0Q2~+2 = d,.X. In other words,
there is an elementa of H~,*(6mod (ci)) such that d~X= i0(a) (= i o a—’(a))
and a

2~a= p
0(X) ( p#(X)); (Takeato be the class of~2r as abovein

mod(ci))).

In the first part of this lemma, fT~(g)o 9~(g)= Sr(P) oAP is identified
with a subalgebraof A (g) (in fact of 1 0 Sg* 0 A 9* o 1) by writing r(w) =

=r(w)(F)=1®r(w)oInIEA(g) and W=W(X)=1l0I0W®IEA(9)
for w E F; elementsof Sr(P) oAP are thus identified with the corresponding

0-cocycles.

Proof It is sufficient to considermonomials

x= fl r(w~’)owe...wn =1] r(c~)(flw0(x)... w,~(x)

where the w’ and the w are homogeneousprimitive forms of degreesgreater

then or equal to 2r + 1. Introducing, (as in the proof of lemma 4), for each

0 ~p ~ n, L~E 94(g) suchthat r(w~)(fl= (d + 6)L~onehasL~= ~ ~ 1-s,s
- 0,2r +1

with L~ “ = w~(x)~2r~+ 1 = degree(wy), (seeLemma4),and

(d + 0) flr(W)(flL0 ... L~= (— l)Pfl r(w1’)(F)r(w~)(F)L0...L~...L~.

Expandingthe last equationin degreasing<<0-degree>>(i.e. in the secondpartial

degree of the bidegree) yields a sequenceof equations.The first 2r + 3 give
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OX = 0 and the equationsof the lemma with explicit Q1’. In particular the

(2r + 3)thequationreads

dQ2r+i + &Q2,.~2 =

= (_l)Pflr(w1’)(F)r(w,,)(F)ciio(X).. .c
2’~(x)...w~(x)=

{psUchtI~t~~EP2r+i}

=drx.

It is worth noticing herethat this proof can beadaptedto give an easyproof

of theorem6. Notice also that if w’ EP2’~1 with s <r, we may do the same
thing for r(W’) X as we did for X, but now one has p

0(r(c~.,)X)= 0, i.e.
r(w’)(F)X= da+ &f3forsomeaandj3inA(g).

We are now readyto identify (Er~d,.),.0~with thespectralsequenceassociated

to E~.

THEOREM 13. For any r E IN, one hasan exact triangle e,.

mod(d)) —~-+ a
2rHeu,*(s mod(d))

~ it

where p~is induced, by restriction to E~C E
0, b~p0 and where i,.(a

2ta) is the

componentof i
0(a) on Er in the directsum decompositionE0 = E~~C ~ E )-

One hasfurthermore d~= i,. op,.’ SO �,. identifies with the rth derivedexact couple

ofe~and (Er, dr),.E~ is theassociatedspectralsequence.

Given XEE,., let a be as in lemma 6, i.e. a
2~a= p

0(X)= p~(X)and d,.(X) =

= i0(a); onehas:

i,. o p,.(X) = i,.(a
2”a) = projE i

0(a) = projEdTX = d~X;

thus dr = ~.°P,.~By lemma 5, we have E,.+ 1 = H(Er~d,.) so, by induction on
r, e,. identifieswith therth derivedexactcoupleofe~.•

It follows from the resultsof 3.2 that onehasanisomorphism

r—r~(g) ~
H~’ (0,mod(d))~~p~(E~)=~ p (E,.).

Furthermore, from Er = U for r>rM(g) it follows that a
2: a2TH~Y,*(0,

mod (ci)) —~a 2TH~~),*(0,mod (ci)) is anisomorphismwheneverr> rM(y); therefore
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a2TH~*(o,mod (ci)) a2(T+k)H~,*(o, mod(d)) for any r> rM(g) and any
k ~ 0 which implies that we have a2TH~.~~,*(o,mod (ci)) = U for r> rM(g) since

any x EH~Y,*(0,mod(d)) is such that there is an integer n ~ 0 for which
a2~x= U.

It remainsto computeker ~ Onehasthe following result.

kr~(g)

PROPOSITION2. One has ker (pr) = Im (ci,).

Let XEE,. be such that p,(X)=0; then d,.X=U. SoX=d~Y+ZwithZE

EE,.~1 = H(E,., ci). One has then ~
1(Z) = p~(Z)= p,.(X) —p~d,.Y = 0, so

X E Im (ci) 0 ker(r-~~~) and the statementof proposition 2 follows by induc-

tion. .

As a consequenceof thelast resultsonehasthe following isomorphisms

p~(E,.)~E,./ker(p~)= ~ (N3/d~N3)o~

S = T~%f(~)

ST (d3N5)®,~3~1

with N = 0 Smr(p
25+ 1) ®A~P2~~~.

m+n~l

Theseformulae end the computationof H~,*(0mod(d)) and therefore the

computation of H(O, mod (ci)) in the case of a reductiveg; in particular the

dimensionsof the HT.S(O, mod (ci)) follow from the dimensions of the space

p2k + 1, (seefor instancein [21for suchcomputations).
Practicallythe isomorphismH~,*(0,mod(d)) 0 p~(E,.)may be realized by

the following procedure.Given a homogeneousbasis (wy) of F, chooseinvariant
~ (as in the proof of lemma 6), such that r(w~)(F)= (d + O)L ; then the

r rM(U)

constructionin the proof of lemma 6 gives a linear mapping ‘~i : r!O E,. -*

—i’ H~,*(0 mod (ci)). Choose, for each r, a supplementaryK~in E,. to ker (p,.);

~ restricted to 0 K,. gives, whencombinedwith 0 K,. 0 p,.(E~),a realization of
the isomorphism H~,*(0mod (ci)) EBPr(Er) by (independent)representative
6-cocyclesmoduloci.
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